20221210 noon

This commit is contained in:
weiye.wang 2022-12-10 11:56:55 +08:00
parent 728dc0a070
commit e865641dfe
6 changed files with 852 additions and 135 deletions

View File

@ -89,7 +89,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.8.8 (default, Apr 13 2021, 15:08:03) [MSC v.1916 64 bit (AMD64)]"
},
"orig_nbformat": 4,
"vscode": {

View File

@ -2,14 +2,14 @@
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"首个空闲id: 12266 , 直至 020000\n",
"首个空闲id: 12308 , 直至 020000\n",
"首个空闲id: 20227 , 直至 030000\n",
"首个空闲id: 30496 , 直至 999999\n"
]

View File

@ -2,20 +2,20 @@
"cells": [
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"#修改起始id,出处,文件名\n",
"starting_id = 12266\n",
"origin = \"2022年春季高考\"\n",
"starting_id = 12308\n",
"origin = \"2023届崇明区一模\"\n",
"filename = r\"C:\\Users\\weiye\\Documents\\wwy sync\\临时工作区\\自拟题目4.tex\"\n",
"editor = \"20221209\\t王伟叶\""
"editor = \"20221210\\t王伟叶\""
]
},
{
"cell_type": "code",
"execution_count": 12,
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [

View File

@ -9,132 +9,48 @@
"name": "stdout",
"output_type": "stream",
"text": [
"012161 填空题\n",
"012162 填空题\n",
"012163 填空题\n",
"012164 填空题\n",
"012165 填空题\n",
"012166 填空题\n",
"012167 填空题\n",
"012168 填空题\n",
"012169 填空题\n",
"012170 填空题\n",
"012171 填空题\n",
"012172 填空题\n",
"012173 选择题\n",
"012174 选择题\n",
"012175 选择题\n",
"012176 选择题\n",
"012177 解答题\n",
"012178 解答题\n",
"012179 解答题\n",
"012180 解答题\n",
"012181 解答题\n",
"012182 填空题\n",
"012183 填空题\n",
"012184 填空题\n",
"012185 填空题\n",
"012186 填空题\n",
"012187 填空题\n",
"012188 填空题\n",
"012189 填空题\n",
"012190 填空题\n",
"012191 填空题\n",
"012192 填空题\n",
"012193 填空题\n",
"012194 选择题\n",
"012195 选择题\n",
"012196 选择题\n",
"012197 选择题\n",
"012198 解答题\n",
"012199 解答题\n",
"012200 解答题\n",
"012201 解答题\n",
"012202 解答题\n",
"012203 填空题\n",
"012204 填空题\n",
"012205 填空题\n",
"012206 填空题\n",
"012207 填空题\n",
"012208 填空题\n",
"012209 填空题\n",
"012210 填空题\n",
"012211 填空题\n",
"012212 填空题\n",
"012213 填空题\n",
"012214 填空题\n",
"012215 选择题\n",
"012216 选择题\n",
"012217 选择题\n",
"012218 选择题\n",
"012219 解答题\n",
"012220 解答题\n",
"012221 解答题\n",
"012222 解答题\n",
"012223 解答题\n",
"012224 填空题\n",
"012225 填空题\n",
"012226 填空题\n",
"012227 解答题\n",
"012228 填空题\n",
"012229 填空题\n",
"012230 填空题\n",
"012231 填空题\n",
"012232 填空题\n",
"012233 填空题\n",
"012234 填空题\n",
"012235 填空题\n",
"012236 选择题\n",
"012237 选择题\n",
"012238 选择题\n",
"012239 选择题\n",
"012240 解答题\n",
"012241 解答题\n",
"012242 解答题\n",
"012243 解答题\n",
"012244 解答题\n",
"012245 填空题\n",
"012246 填空题\n",
"012247 填空题\n",
"012248 填空题\n",
"012249 填空题\n",
"012250 填空题\n",
"012251 填空题\n",
"012252 填空题\n",
"012253 填空题\n",
"012254 填空题\n",
"012255 填空题\n",
"012256 填空题\n",
"012257 选择题\n",
"012258 选择题\n",
"012259 选择题\n",
"012260 选择题\n",
"012261 解答题\n",
"012262 解答题\n",
"012263 解答题\n",
"012264 解答题\n",
"012265 解答题\n",
"012266 填空题\n",
"012267 填空题\n",
"012268 填空题\n",
"012269 填空题\n",
"012270 填空题\n",
"012271 填空题\n",
"012272 填空题\n",
"012273 填空题\n",
"012274 填空题\n",
"012275 填空题\n",
"012276 填空题\n",
"012277 填空题\n",
"012278 选择题\n",
"012279 选择题\n",
"012280 选择题\n",
"012281 选择题\n",
"012282 解答题\n",
"012283 解答题\n",
"012284 解答题\n",
"012285 解答题\n",
"012286 解答题\n"
"012287 填空题\n",
"012288 填空题\n",
"012289 填空题\n",
"012290 填空题\n",
"012291 填空题\n",
"012292 填空题\n",
"012293 填空题\n",
"012294 填空题\n",
"012295 填空题\n",
"012296 填空题\n",
"012297 填空题\n",
"012298 填空题\n",
"012299 选择题\n",
"012300 选择题\n",
"012301 选择题\n",
"012302 选择题\n",
"012303 解答题\n",
"012304 解答题\n",
"012305 解答题\n",
"012306 解答题\n",
"012307 解答题\n",
"012308 填空题\n",
"012309 填空题\n",
"012310 填空题\n",
"012311 填空题\n",
"012312 填空题\n",
"012313 填空题\n",
"012314 填空题\n",
"012315 填空题\n",
"012316 填空题\n",
"012317 填空题\n",
"012318 填空题\n",
"012319 填空题\n",
"012320 选择题\n",
"012321 选择题\n",
"012322 选择题\n",
"012323 选择题\n",
"012324 解答题\n",
"012325 解答题\n",
"012326 解答题\n",
"012327 解答题\n",
"012328 解答题\n"
]
}
],

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": null,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
@ -469,6 +469,9 @@
" modified_data = re.sub(r\"([\\u4e00-\\u9fa5])( )([\\u4e00-\\u9fa5])\",lambda x:x.group(1)+x.group(3),modified_data)\n",
" modified_data = re.sub(r\"\\$ \",\"$\",modified_data)\n",
" modified_data = re.sub(r\" \\$\",\"$\",modified_data)\n",
"#mathpix的错别字修改\n",
"modified_data = modified_data.replace(\"雉\",\"锥\")\n",
"\n",
"\n",
"setCopy(modified_data)\n",
"\n",

View File

@ -303027,6 +303027,804 @@
"remark": "",
"space": "12ex"
},
"012287": {
"id": "012287",
"content": "已知集合$A=(-2,1]$, $B=\\mathbf{Z}$, 则$A \\cap B=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题1",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012288": {
"id": "012288",
"content": "函数$y=\\sin x \\cdot \\cos x$的最小正周期为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题2",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012289": {
"id": "012289",
"content": "已知$a$、$b \\in \\mathbf{R}$, $\\mathrm{i}$是虚数单位, 若$a-\\mathrm{i}$与$2+b \\mathrm{i}$互为共轭复数, 则$(a+b \\mathrm{i})^2=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题3",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012290": {
"id": "012290",
"content": "记$S_n$为等差数列$\\{a_n\\}$的前$n$项和, 若$2 S_3=3 S_2+6$, 则公差$d=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题4",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012291": {
"id": "012291",
"content": "已知函数$y=a-\\dfrac 2{2^x+1}$为奇函数, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题5",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012292": {
"id": "012292",
"content": "已知圆锥的母线长为$5$, 侧面积为$20 \\pi$, 则此圆锥的体积为\\blank{50}. (结果保留$\\pi$)",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题6",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012293": {
"id": "012293",
"content": "已知向量$\\overrightarrow a=(5,3)$, $\\overrightarrow b=(-1,2)$, 则$\\overrightarrow a$在$\\overrightarrow b$上的投影向量的坐标为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题7",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012294": {
"id": "012294",
"content": "对任意$x \\in \\mathbf{R}$, 不等式$|x-2|+|x-3|\\geq 2 a^2+a$恒成立, 则实数$a$的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题8",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012295": {
"id": "012295",
"content": "已知集合$A=\\{x | \\dfrac 2{x-2} \\geq 1, \\ x \\in \\mathbf{R}\\}$, 设函数$y=\\log_{\\frac 12} x+a(x \\in A)$的值域为$B$, 若$B \\subseteq A$, 则实数$a$的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题9",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012296": {
"id": "012296",
"content": "已知$F_1$、$F_2$是双曲线$\\Gamma: \\dfrac{x^2}{a^2}-\\dfrac{y^2}{b^2}=1$($a>0$, $b>0$)的左、右焦点, 点$M$是双曲线$\\Gamma$上的任意一点(不是顶点), 过$F_1$作$\\angle F_1MF_2$的角平分线的垂线, 垂足为$N$, 线段$F_1N$的延长线交$MF_2$于点$Q$, $O$是坐标原点, 若$|ON|=\\dfrac{|F_1F_2|}6$, 则双曲线$\\Gamma$的渐近线方程为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题10",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012297": {
"id": "012297",
"content": "动点$P$在棱长为$1$的正方体$ABCD-A_1B_1C_1D_1$表面上运动, 且与点$A$的距离是$\\dfrac{2 \\sqrt 3}3$, 点$P$的集合形成一条曲线, 这条曲线的长度为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题11",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012298": {
"id": "012298",
"content": "已知数列$\\{a_n\\}$的各项都是正数, $a_{n+1}^2-a_{n+1}=a_n$($n \\in \\mathbf{N}^*$), 若数列$\\{a_n\\}$为严格增数列, 则首项$a_1$的取值范围是\\blank{50}; 当$a_1=\\dfrac 23$时, 记$b_n=\\dfrac{(-1)^{n-1}}{a_n-1}$, 若$k<b_1+b_2+\\cdots+b_{2022}<k+1$, 则整数$k=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题12",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012299": {
"id": "012299",
"content": "下面四个条件中, 使$a>b$成立的充要条件为\\bracket{20}.\n\\fourch{$a^2>b^2$}{$a^3>b^3$}{$a>b-1$}{$a>b+1$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题13",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012300": {
"id": "012300",
"content": "函数$y=(x^2-1) \\mathrm{e}^x$的图像可能为\\bracket{20}.\n\\fourch{\\begin{tikzpicture}[>=latex,scale = 0.8]\n\\clip (-2.25,-2.25) rectangle (2.25,2.25);\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (-1,0.2) -- (-1,0) node [below] {$-1$};\n\\draw (1,0.2) -- (1,0) node [below] {$1$};\n\\draw (0.2,1) -- (0,1) node [left] {$1$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -2.5:2.5,ultra thick,samples = 100] plot (\\x,{5*(-1-\\x)*exp(-\\x*\\x-1)});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex,scale = 0.8]\n\\clip (-2.25,-2.25) rectangle (2.25,2.25);\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (-1,0.2) -- (-1,0) node [below] {$-1$};\n\\draw (1,0.2) -- (1,0) node [below] {$1$};\n\\draw (0.2,1) -- (0,1) node [left] {$1$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -2.5:2.5,ultra thick,samples = 100] plot (\\x,{0.4*(\\x+0.5)*(\\x+2.5)*(\\x-1.5)});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex,scale = 0.8]\n\\clip (-2.25,-2.25) rectangle (2.25,2.25);\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (-1,0.2) -- (-1,0) node [below] {$-1$};\n\\draw (1,0.2) -- (1,0) node [below] {$1$};\n\\draw (0.2,1) -- (0,1) node [left] {$1$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -2.5:2.5,ultra thick,samples = 100] plot (\\x,{(\\x*\\x-1)*exp(\\x)});\n\\end{tikzpicture}}{\\begin{tikzpicture}[>=latex,scale = 0.8]\n\\clip (-2.25,-2.25) rectangle (2.25,2.25);\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (-1,0.2) -- (-1,0) node [below] {$-1$};\n\\draw (1,0.2) -- (1,0) node [below] {$1$};\n\\draw (0.2,1) -- (0,1) node [left] {$1$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -2.5:2.5,ultra thick,samples = 100] plot (\\x,{0.4*(\\x+1)*(\\x+3)*(\\x-1)});\n\\end{tikzpicture}}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题14",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012301": {
"id": "012301",
"content": "在天文学中, 天体的明暗程度可以用星等或亮度来描述, 两颗星的星等与亮度满足$m_2-m_1=\\dfrac 52 \\lg \\dfrac{E_1}{E_2}$, 其中星等为$m_k$的星的亮度为$E_k$($k=1$、$2$), 已知太阳的星等是$-26.7$, 天狼星的星等是$-1.45$, 则太阳与天狼星的亮度的比值为\\bracket{20}.\n\\fourch{$10^{10.1}$}{$10.1$}{$\\lg 10.1$}{$10^{-10.1}$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题15",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012302": {
"id": "012302",
"content": "已知函数$f(x)=\\begin{cases}|x+2|, & x<0, \\\\x^2-4 x+2, & x \\geq 0,\\end{cases}$ $g(x)=k x+1$, 若函数$y=f(x)-g(x)$的图像经过四个象限, 则实数$k$的取值范围为\\bracket{20}.\n\\fourch{$(-2, \\dfrac 12)$}{$(-6, \\dfrac 12)$}{$(-2,+\\infty)$}{$(-\\infty,-6) \\cup(\\dfrac 12,+\\infty)$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题16",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012303": {
"id": "012303",
"content": "如图, 已知$AB \\perp$平面$BCD$, $BC \\perp CD$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [left] {$B$} coordinate (B);\n\\draw ({2*sqrt(2)},0,0) node [right] {$D$} coordinate (D);\n\\draw ({sqrt(2)},0,{sqrt(2)}) node [below] {$C$} coordinate (C);\n\\draw (0,1,0) node [left] {$A$} coordinate (A);\n\\draw (A) -- (B) -- (C) -- (D) (A) -- (D) (A) -- (C);\n\\draw [dashed] (B) -- (D);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: 平面$ACD \\perp$平面$ABC$;\\\\\n(2) 若$AB=1$, $CD=BC=2$, 求直线$AD$与平面$ABC$所成角的大小.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题17",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012304": {
"id": "012304",
"content": "在$\\triangle ABC$中, 内角$A$、$B$、$C$所对边分别为$a$、$b$、$c$, 已知$b \\sin A=a \\cos (B-\\dfrac{\\pi}6)$.\\\\\n(1) 求角$B$的大小;\\\\\n(2) 若$c=2a$, $\\triangle ABC$的面积为$\\dfrac{2 \\sqrt 3}3$, 求$\\triangle ABC$的周长.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题18",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012305": {
"id": "012305",
"content": "某地准备在山谷中建一座桥梁, 桥址位置的坚直截面图如图所示, 谷底$O$在水平线$MN$上、桥$AB$与$MN$平行, $OO'$为铅垂线($O'$在$AB$上). 经测量, 山谷左侧的轮廓曲线$AO$上任一点$D$到$MN$的距离$h_1$(米)与$D$到$OO'$的距离$a$(米) 之间满足关系式$h_1=\\dfrac 1{40} a^2$, 山谷右侧的轮廓曲线$BO$上任一点$F$到$MN$的距离$h_2$(米)与$F$到$OO'$的距离$b$(米)之间满足关系式$h_2=-\\dfrac 1{800} b^3+6 b$. 已知点$B$到$OO'$的距离为$40$米.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.2]\n\\draw (-8,16) node [left] {$A$} coordinate (A);\n\\draw (4,16) node [right] {$B$} coordinate (B);\n\\draw (-10,0) node [below] {$M$} coordinate (M);\n\\draw (6,0) node [below] {$N$} coordinate (N);\n\\draw (0,0) node [below] {$O$} coordinate (O);\n\\draw (0,16) node [above] {$O'$} coordinate (O');\n\\draw (-6,16) node [above] {$C$} coordinate (C);\n\\draw (-6,9) node [left] {$D$} coordinate (D);\n\\draw (2,16) node [above] {$E$} coordinate (E);\n\\draw (2,12) node [right] {$F$} coordinate (F);\n\\draw [ultra thick] (A) -- (B) (C) -- (D) (E) -- (F);\n\\draw (M) -- (N);\n\\draw [dashed] (O) -- (O');\n\\draw [domain = -8:0] plot (\\x,{0.25*pow(\\x,2)});\n\\draw [domain = 0:4.2] plot (\\x,{16-pow(\\x-4,2)});\n\\draw [dashed] (D) --++ (0,-9) node [midway,left] {$h_1$} coordinate (h_1) (D) --++ (6,0) node [midway,above] {$a$} coordinate (a);\n\\draw [dashed] (F) --+ (0,-12) node [midway,right] {$h_2$} coordinate (h_2) (F) --++ (-2,0) node [midway,above] {$b$} coordinate (b);\n\\end{tikzpicture}\n\\end{center}\n(1) 求谷底$O$到桥面$AB$的距离和桥$AB$的长度;\\\\\n(2) 计划在谷底两侧建造平行于$OO'$的桥墩$CD$和$EF$, 且$CE$为$80$米, 其中$C$、$E$在$AB$上(不包括端点), 桥墩$EF$每米造价为$k$(万元)、桥墩$CD$每米造价为$\\dfrac 32 k$(万元)($k>0$). 问$O'E$为多少米时, 桥墩$CD$与$EF$的总造价最低?",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题19",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012306": {
"id": "012306",
"content": "已知椭圆$\\Gamma: \\dfrac{x^2}{a^2}+\\dfrac{y^2}{b^2}=1$($a>b>0$)的长轴长为$2 \\sqrt 3$, 离心率为$\\dfrac{\\sqrt 6}3$, 斜率为$k$的直线$l$与椭圆$\\Gamma$有两个不同的交点$A$、$B$.\\\\\n(1) 求椭圆$\\Gamma$的方程;\\\\\n(2) 若直线$l$的方程为$y=x+t$, 椭圆上点$M(-\\dfrac 32, \\dfrac 12)$关于直线$l$的对称点$N$(与$M$不重合)在椭圆$\\Gamma$上, 求$t$的值;\\\\\n(3) 设$P(-2,0)$, 直线$PA$与椭圆$\\Gamma$的另一个交点为$C$, 直线$PB$与椭圆$\\Gamma$的另一个交点为$D$、若点$C$、$D$和点$Q(-\\dfrac 74, \\dfrac 12)$三点共线, 求$k$的值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题20",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012307": {
"id": "012307",
"content": "己知定义在$\\mathbf{R}$上的函数$f(x)=\\mathrm{e}^{k x+b}$($\\mathrm{e}$是自然对数的底数) 满足$f(x)=f'(x)$且$f(-1)=1$, 删除无穷数列$f(1)$、$f(2)$、$f(3)$、$\\cdots$、$f(n)$、$\\cdots$中的第$3$项、第$6$项、$\\cdots$、第$3n$项, $\\cdots$, ($n \\in \\mathbf{N}$, $n\\ge 1$), 余下的项按原来顺序组成一个新数列$\\{t_n\\}$, 记数列$\\{t_n\\}$前$n$项和为$T_n$.\\\\\n(1) 求函数$f(x)$的解析式;\\\\\n(2) 已知数列$\\{t_n\\}$的通项公式是$t_n=f(g(n))$, $n \\in \\mathbf{N}$, $n\\ge 1$, 求函数$g(n)$的解析式;\n(3) 设集合$X$是实数集$\\mathbf{R}$的非空子集, 如果正实数$a$满足: 对任意$x_1$、$x_2 \\in X$, 都有$|x_1-x_2|\\leq a$, 则称$a$为集合$X$的一个``阈度'', 记集合$H=\\{w | w=\\dfrac{T_n}{f(\\dfrac{3 n}2-\\dfrac{1+3(-1)^n}4)}, \\ n \\in \\mathbf{N}, \\ n\\ge 1\\}$, 试问集合$H$存在``阈度''吗? 若存在, 求出集合$H$``阈度''的取值范围, 若不存在, 试说明理由.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届松江区一模试题21",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012308": {
"id": "012308",
"content": "已知集合$A=\\{x | 0<x \\leq 4\\}$, $B=\\{-1,2,3,4,5\\}$, 则$A \\cap B=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题1",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012309": {
"id": "012309",
"content": "不等式$\\dfrac{2 x+1}{x-2}<0$的解集为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题2",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012310": {
"id": "012310",
"content": "已知复数$z_1=2+a \\mathrm{i}$, $z_2=3+\\mathrm{i}$, 若$z_1,z_2$是纯虚数, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题3",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012311": {
"id": "012311",
"content": "已知对数函数$y=\\log_a x$($a>0$, $a \\neq 1$)的图像经过点$(4,2)$, 则实数$a=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题4",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012312": {
"id": "012312",
"content": "设等比数列$\\{a_n\\}$满足$a_1+a_2=-1$, $a_1-a_3=-3$, 则$a_4=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题5",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012313": {
"id": "012313",
"content": "已知方程组$\\begin{cases}x+m y=2, \\\\ m x+16 y=8\\end{cases}$无解, 则实数$m=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题6",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012314": {
"id": "012314",
"content": "已知角$\\alpha$的终边与单位圆$x^2+y^2=1$交于点$P(\\dfrac 12, y)$, 则$\\sin (\\dfrac{\\pi}2+\\alpha)=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题7",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012315": {
"id": "012315",
"content": "将半径为$2$的半圆形纸片卷成一个无盖的圆锥筒, 则该圆锥筒的高为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题8",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012316": {
"id": "012316",
"content": "已知函数$f(x)=x^2$, 则曲线$y=f(x)$在点$P(1,1)$处的切线方程是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题9",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012317": {
"id": "012317",
"content": "设函数$f(x)=\\sin (\\omega x-\\dfrac{\\pi}6)+k$($\\omega>0$), 若$f(x) \\leq f(\\dfrac{\\pi}3)$对任意的实数$x$都成立, 则$\\omega$的最小值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题10",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012318": {
"id": "012318",
"content": "在边长为$2$的正六边形$ABCDEF$中, 点$P$为其内部或边界上一点, 则$\\overrightarrow{AD} \\cdot \\overrightarrow{BP}$的取值范围为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题11",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012319": {
"id": "012319",
"content": "已知椭圆$\\Gamma_1$与双曲线$\\Gamma_2$的离心率互为倒数, 且它们有共同的焦点$F_1$、$F_2$, $P$是$\\Gamma_1$与$\\Gamma_2$在第一象限的交点, 当$\\angle F_1PF_2=\\dfrac{\\pi}6$时, 双曲线$\\Gamma_2$的离心率为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题12",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012320": {
"id": "012320",
"content": "下列函数中, 既是奇函数又在区间$(0,1)$上是严格增函数的是\\bracket{20}.\n\\fourch{$y=\\sqrt x$}{$y=-x^3$}{$y=\\lg x$}{$y=\\sin x$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题13",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012321": {
"id": "012321",
"content": "设$x \\in \\mathbf{R}$, 则``$x+\\dfrac 1x>2$''是``$x \\neq 1$''的\\bracket{20}条件.\n\\fourch{充分不必要}{必要不充分}{充要}{既不充分也不必要}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题14",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012322": {
"id": "012322",
"content": "设函数$f(x)=\\sin (x-\\dfrac{\\pi}6)$, 若对于任意$\\alpha \\in[-\\dfrac{5 \\pi}6,-\\dfrac{\\pi}2]$, 在区间$[0, m]$上总存在唯一确定的$\\beta$, 使得$f(\\alpha)+f(\\beta)=0$, 则$m$的最小值为\\bracket{20}.\n\\fourch{$\\dfrac{\\pi}6$}{$\\dfrac{\\pi}2$}{$\\dfrac{7 \\pi}6$}{$\\pi$}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题15",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012323": {
"id": "012323",
"content": "已知曲线$C:(x^2+y^2)^3=16 x^2 y^2$, 命题$p$: 曲线$C$仅过一个横坐标与纵坐标都是整数的点; 命题$q$: 曲线$C$上的点到原点的最大距离是$2$, 则下列说法正确的是\\bracket{20}.\n\\twoch{$p$、$q$都是真命题}{$p$是真命题, $q$是假命题}{$p$是假命题, $q$是真命题}{$p$、$q$都是假命题}",
"objs": [],
"tags": [],
"genre": "选择题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题16",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": ""
},
"012324": {
"id": "012324",
"content": "如图, 长方体$ABCD-A_1B_1C_1D_1$中, $AB=BC=\\sqrt 2$, $A_1C$与底面$ABCD$所成角为$45^{\\circ}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{{sqrt(2)}}\n\\def\\m{{sqrt(2)}}\n\\def\\n{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D1);\n\\draw (A1) -- (B1) -- (C1) -- (D1) -- cycle;\n\\draw (A) -- (A1) (B) -- (B1) (C) -- (C1);\n\\draw [dashed] (D) -- (D1);\n\\draw (D1) -- (B1) (A1) -- (B);\n\\draw [dashed] (A) -- (D1) (A1) -- (D) (A1) -- (C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求四棱锥$A_1-ABCD$的体积;\\\\\n(2) 求异面直线$A_1B$与$B_1D_1$所成角的大小.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题17",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012325": {
"id": "012325",
"content": "已知函数$f(x)=\\sin x \\cos x-\\sin ^2 x+\\dfrac 12$.\\\\\n(1) 求$f(x)$的单调递增区间;\\\\\n(2) 在$\\triangle ABC$中, $a$、$b$、$c$为角$A$、$B$、$C$的对边, 且满足$b \\cos 2 A=b \\cos A-a \\sin B$, 且$0<A<\\dfrac{\\pi}2$, 求$f(B)$的取值范围.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题18",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012326": {
"id": "012326",
"content": "某公园有一块如图所示的区域$OACB$, 该场地由线段$OA$、$OB$、$AC$及曲线段$BC$围成. 经测量, $\\angle AOB=90^{\\circ}$, $OA=OB=100$米, 曲线$BC$是以$OB$为对称轴的抛物线的一部分, 点$C$到$OA$、$OB$的距离都是$50$米. 现拟在该区域建设一个矩形游乐场$OEDF$, 其中点$D$在线段$AC$或曲线段$BC$上, 点$E$、$F$分别在线段$OA$、$OB$上, 且该游乐场最短边长不低于$30$米, 设$DF=x$米, 游乐场的面积为$S$平方米.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.03]\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\draw (100,0) node [below right] {$A$} coordinate (A);\n\\draw (0,100) node [above left] {$B$} coordinate (B);\n\\draw (50,50) node [above right] {$C$} coordinate (C);\n\\draw (C) -- (A) (A) -- (O) -- (B);\n\\draw [domain = 0:50, samples = 100] plot (\\x,{100-\\x*\\x/50});\n\\draw (40,68) node [above right] {$D$} coordinate (D);\n\\draw (D) -- ($(O)!(D)!(A)$) node [below] {$E$} coordinate (E);\n\\draw (D) -- ($(O)!(D)!(B)$) node [left] {$F$} coordinate (F);\n\\end{tikzpicture}\n\\end{center}\n(1) 试建立平面直角坐标系, 求曲线段$BC$的方程;\\\\\n(2) 求面积$S$关于$x$的函数解析式$S=f(x)$;\\\\\n(3) 试确定点$D$的位置, 使得游乐场的面积$S$最大.(结果精确到$0.1$米)",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题19",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012327": {
"id": "012327",
"content": "已知椭圆$\\dfrac{x^2}{a^2}+y^2=1$($a>1$)的右焦点为$F$, 左右顶点分别为$A$、$B$, 直线$l$过点$B$且与$x$轴垂直, 点$P$是椭圆上异于$A$、$B$的点, 直线$AP$交直线$l$于点$D$.\\\\\n(1) 若$E$是椭圆的上顶点, 且$\\triangle AEF$是直角三角形, 求椭圆的标准方程;\\\\\n(2) 若$a=2$, $\\angle PAB=45^{\\circ}$, 求$\\triangle PAF$的面积;\\\\\n(3) 判断以$BD$为直径的圆与直线$PF$的位置关系, 并加以证明.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题20",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"012328": {
"id": "012328",
"content": "己知数列$\\{a_n\\}$满足$|a_i-a_{i+1}|\\leq|a_{i+1}-a_{i+2}|$($i=1,2, \\cdots, n-2$).\\\\\n(1) 若数列$\\{a_n\\}$的前$4$项分别为$4$、$2$、$a_3$、$1$, 求$a_3$的取值范围;\\\\\n(2) 已知数列$\\{a_n\\}$中各项互不相同, 令$b_m=|a_m-a_{m+1}|$($m=1,2, \\cdots, n-1$), 求证: 数列$\\{a_n\\}$是等差数列的充要条件是数列$\\{b_m\\}$是常数列;\\\\\n(3) 已知数列$\\{a_n\\}$是$m$($m \\in \\mathbf{N}$且$m \\geq 3$)个连续正整数$1,2, \\cdots, m$的一个排列, 若$\\displaystyle\\sum_{k=1}^{m-1}|a_k-a_{k+1}|=m+2$, 求$m$的所有取值.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "2023届崇明区一模试题21",
"edit": [
"20221210\t王伟叶"
],
"same": [],
"related": [],
"remark": "",
"space": "12ex"
},
"020001": {
"id": "020001",
"content": "判断下列各组对象能否组成集合, 若能组成集合, 指出是有限集还是无限集.\\\\\n(1) 上海市控江中学$2022$年入学的全体高一年级新生;\\\\\n(2) 中国现有各省的名称;\\\\\n(3) 太阳、$2$、上海市;\\\\\n(4) 大于$10$且小于$15$的有理数;\\\\\n(5) 末位是$3$的自然数;\\\\\n(6) 影响力比较大的中国数学家;\\\\\n(7) 方程$x^2+x-3=0$的所有实数解;\\\\ \n(8) 函数$y=\\dfrac 1x$图像上所有的点;\\\\ \n(9) 在平面直角坐标系中, 到定点$(0, 0)$的距离等于$1$的所有点;\\\\\n(10) 不等式$3x-10<0$的所有正整数解;\\\\\n(11) 所有的平面四边形.",