录入2024届高三124分守护卷5题目
This commit is contained in:
parent
f87a5217b6
commit
e8684fdec4
|
|
@ -605026,6 +605026,246 @@
|
|||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022859": {
|
||||
"id": "022859",
|
||||
"content": "若集合 $A=\\{x | 0<x<3\\}$, 集合 $B=\\{x | x<2\\}$, 则 $A \\cap B=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022860": {
|
||||
"id": "022860",
|
||||
"content": "以抛物线 $y^2=-6 x$ 的焦点为圆心, 且与抛物线的准线相切的圆的方程是\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022861": {
|
||||
"id": "022861",
|
||||
"content": "设 $\\{a_n\\}$ 是等差数列, 且 $a_1=3$, $a_3+a_5=18$, 则 $a_n=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022862": {
|
||||
"id": "022862",
|
||||
"content": "已知集合 $A=\\{-2,-1,-\\dfrac{1}{2}, \\dfrac{1}{3}, \\dfrac{1}{2}, 1,2,3\\}$, 任取 $k \\in A$, 则幂函数 $f(x)=x^k$ 为偶函数的概率为\\blank{50}. (结果用数值表示)",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022863": {
|
||||
"id": "022863",
|
||||
"content": "在 $\\triangle ABC$ 中, 边 $a$、$b$、$c$ 满足 $a+b=6$, $\\angle C=120^{\\circ}$, 则边 $c$ 的最小值为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022864": {
|
||||
"id": "022864",
|
||||
"content": "若函数 $y=a x+2 a-\\sqrt{1-x^2}$ 存在零点, 则实数 $a$ 的取值范围是\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022865": {
|
||||
"id": "022865",
|
||||
"content": "若命题甲: $x-1=0$, 命题乙: $\\lg ^2 x-\\lg x=0$. 则命题甲是命题乙的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充要条件}{既非充分又非必要条件}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022866": {
|
||||
"id": "022866",
|
||||
"content": "下列函数是偶函数, 且在 $[0,+\\infty)$ 上严格增的是\\bracket{20}.\n\\twoch{$f(x)=\\log _2(4^x+1)-x$}{$f(x)=|x|-2 \\cos x$}{$f(x)= \\begin{cases}x^2+\\dfrac{1}{x^2},& x \\neq 0,\\\\0, & x=0\\end{cases}$}{$f(x)=10^{|\\lg x|}$}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022867": {
|
||||
"id": "022867",
|
||||
"content": "如图, 四棱锥 $S-ABCD$ 的底面是正方形, $SD \\perp$ 平面 $ABCD$, $SD=AD=a$, 点 $E$是线段 $SD$ 上任意一点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0,0) node [below] {$D$} coordinate (D);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (2,0,2) node [below] {$B$} coordinate (B);\n\\draw (0,0,2) node [below] {$A$} coordinate (A);\n\\draw (0,2,0) node [above] {$S$} coordinate (S);\n\\draw ($(D)!0.6!(S)$) node [left] {$E$} coordinate (E);\n\\draw (A)--(B)--(C)--(S)--cycle(B)--(S);\n\\draw [dashed] (A)--(C)(E)--(B)(A)--(D)--(C)(S)--(D);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $AC \\perp BE$;\\\\\n(2) 试确定点 $E$ 的位置, 使 $BE$ 与平面 $ABCD$ 所成角的大小为 $30^{\\circ}$.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022868": {
|
||||
"id": "022868",
|
||||
"content": "某贫困村共有农户 $100$ 户, 均从事水果种植, 平均每户年收入为 $1.8$ 万元. 在当地政府大力扶持和引导下, 村委会决定, 2020 年初抽出 $5 x$ 户 ($x$ 是不大于 $9$ 的正整数) 从事水果销售工作. 经测算, 剩下从事水果种植的农户平均每户年收入比上一年提高了 $4 x \\%$,\n而从事水果销售的农户平均每户年收入为 $(3-\\dfrac{1}{5}x)$ 万元.\\\\\n(1) 为了使从事水果种植的农户三年后平均每户年收入不低于 2.4 万元, 那么 2020 年初至少应抽出多少农户从事水果销售工作?\\\\\n(2) 若一年后, 该村平均每户的年收入为 $f(x)$ (万元), 问 $f(x)$ 的最大值是否可以达到 2.1 万元?",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022869": {
|
||||
"id": "022869",
|
||||
"content": "已知曲线 $C: x^2-y^2=1$, 过点 $T(t, 0)$ 作直线 $l$ 和曲线 $C$ 交于 $A, B$ 两点.\\\\\n(1) 求曲线 $C$ 的焦点到它渐近线的距离;\\\\\n(2) 若 $t=0$, 点 $A$ 在第一象限, $AH \\perp x$ 轴, 垂足为 $H$, 连结 $BH$. 求直线 $BH$ 倾斜角的取值范围.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022870": {
|
||||
"id": "022870",
|
||||
"content": "定义 $f(a_1, a_2, \\cdots, a_n)=|a_1-a_2|+|a_2-a_3|+\\cdots+|a_{n-1}-a_n|$($n \\in \\mathbf{N}$, $n \\geq 3$) 为有限实数列 $\\{a_n\\}$ 的``波动强度''.\\\\\n(1) 求数列 $1,4,2,3$ 的``波动强度'';\\\\\n(2) 若数列 $a, b, c, d$ 满足 $(a-b)(b-c)>0$, 判断 $f(a, b, c, d) \\leq f(a, c, b, d)$ 是否正确,如果正确请证明, 如果错误请举出反例.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "2024届高三上学期124分守护卷题目",
|
||||
"edit": [
|
||||
"20231124\t毛培菁"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"030001": {
|
||||
"id": "030001",
|
||||
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",
|
||||
|
|
|
|||
Reference in New Issue