From f1740ee2d7a5f0e4878ac7b2bc8c7ba03961795c Mon Sep 17 00:00:00 2001 From: "weiye.wang" Date: Tue, 9 May 2023 22:27:04 +0800 Subject: [PATCH] =?UTF-8?q?=E5=BD=95=E5=85=A5=E7=AC=AC=E4=B8=89=E8=BD=AE?= =?UTF-8?q?=E5=A4=8D=E4=B9=A0=E8=AE=B2=E4=B9=89=E7=AD=94=E6=A1=88?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- 工具/文本文件/metadata.txt | 185 +++++++++++++++++++++++++++++++++++-- 题库0.3/Problems.json | 114 +++++++++++------------ 2 files changed, 233 insertions(+), 66 deletions(-) diff --git a/工具/文本文件/metadata.txt b/工具/文本文件/metadata.txt index 2c287290..15723c9a 100644 --- a/工具/文本文件/metadata.txt +++ b/工具/文本文件/metadata.txt @@ -1,15 +1,182 @@ ans -014613 -$(-8,-7)$ +014969 +$2\sqrt{2}-3$ -014615 -$\dfrac{\sqrt{2}}2$ +014970 +$[-1,0]$ -014961 -$\dfrac 23\sqrt{3}$ +014971 +$11$ -014953 -$a=3$, $b=4$ +014972 +$\dfrac{\pi}{9}$ -014962 +014965 +$(-\infty,8-4\sqrt{2}]$ + +040558 +$[0,2-\ln 2]$ + +014966 +D + +014968 +(1) 定值为$20$, 证明略; (2) $x=5$且$-5\le y\le 5$ + +014973 +$\dfrac{2\sqrt{6}}3$ + + +040556 +(1) $[-\dfrac 43,0]$; (2) $50-6\sqrt{41}$; (3) $[2,5+3\sqrt{2}]$ + +040560 +$(-\infty,\dfrac 12]$ + +040563 +$(1,5)$ + +040564 +$8$ + +040568 +$\dfrac{29}{13}$ + +014884 +$\{0\}\cup (1,3]$ + +014887 +$(-\infty,-5]$ + +014894 +B + +014897 +$(-\infty,-\dfrac 49)$ + +014891 +(1) 证明略; (2) $f(x)=-\dfrac x{2+x}$; (3) $(\dfrac{1}{101},\dfrac{1}{99})$ + + +014725 +$2$或$\sqrt{6}$ + +014924 +$36$ + +014926 +B + +014733 +$(-\infty,-\dfrac{\sqrt{3a}}3]$和$[\dfrac{\sqrt{3a}}3,+\infty)$ + +014882 +(1) 定值为$r$, 证明略; (2) 当$a=1$时, 周期为$1$; 当$a\in (0,1)\cup (1,+\infty)$时, 周期为$2$; (3) $S_n=n$($r=0$时)或$S_n=\dfrac 34n^2+\dfrac 54n$($r=3$时) + +014931 +$36$ + +014736 +$(-\infty,-2]\cup [\dfrac 12,+\infty)$ + +014930 +D + +014922 +$a=0$时, $f(x)$是偶函数; $a=1$时, $f(x)$是奇函数; $a\ne 0$且$a\ne 1$时, $f(x)$既不是奇函数, 又不是偶函数 + +014925 +证明略 + + +014943 +$(\dfrac 32,2)$ + +014909 +(1) $[-1,6]$; (2) $[-13,9]$ + +031397 +$\{\dfrac 12\}$ + +031398 +证明略 + +031399 +(1) 存在, 理由略; (2) 存在, 理由略; (3) 存在, 理由略 + +014944 +$12\pi$ + +031400 +$(-\infty,-6)\cup (6,+\infty)$ + +014989 +\textcircled{2}\textcircled{3} + +031401 +$\sqrt{10}$ + +014910 +(1) (i) $A$与$B$被直线$l$分割; (ii) $A$与$C$不被直线$l$分割; (2) 如$x+y=0$, 理由略; (3) 证明略 + +014987 +$4\pi$ + +014913 +(1) $d(P_1,l_1)=1$, $d(P_2,l_1)=\sqrt{5}$;\\ +(2) $D=\left\{(x,y)|\begin{cases}x\ge 2, \\ (x-2)^2+(y-2)^2=1,\end{cases}\text{ 或 } \begin{cases} x\le =2, \\ (x+2)^2+(y-2)^2=1, \end{cases}\text{ 或 }\begin{cases} -2