添加6道自拟题目(2024届高三上测验6)
This commit is contained in:
parent
4b6055d6ea
commit
f8da5eb107
|
|
@ -616546,6 +616546,126 @@
|
|||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022997": {
|
||||
"id": "022997",
|
||||
"content": "已知直线 $y=x+1$ 上有两个点 $A(a_1, b_1)$、$B(a_2, b_2)$. 已知 $a_1, b_1, a_2, b_2$ 满足 $\\sqrt{2}|a_1 a_2+b_1 b_2|=\\sqrt{a_1^2+b_1^2}\\cdot \\sqrt{a_2^2+b_2^2}$, 若 $a_1>a_2$, $|AB|=\\sqrt{2}+2$, 则这样的点 $A$ 有个.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"022998": {
|
||||
"id": "022998",
|
||||
"content": "已知点 $P(a, b)$, 曲线 $C_1$ 的方程 $y=\\sqrt{1-x^2}$, 曲线 $C_2$ 的方程 $x^2+y^2=1$, 则``点 $P(a, b)$ 在曲线 $C_1$ 上''是``点 $P(a, b)$ 在曲线 $C_2$ 上''的\\bracket{20}.\n\\twoch{充分非必要条件}{必要非充分条件}{充分必要条件}{既非充分又非必要条件}",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "选择题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "",
|
||||
"unrelated": []
|
||||
},
|
||||
"022999": {
|
||||
"id": "022999",
|
||||
"content": "已知长方体 $ABCD-A_1B_1C_1D_1$ 中, $AB=2$, $BC=4$, $AA_1=4$, 点 $M$ 是棱 $C_1D_1$ 上的动点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 0.6]\n\\def\\l{2}\n\\def\\m{4}\n\\def\\n{4}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\m) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\m) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\n,0) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,\\n,0) node [right] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\n,0) node [above right] {$C_1$} coordinate (C_1);\n\\draw (D) ++ (0,\\n,0) node [above left] {$D_1$} coordinate (D_1);\n\\draw (A_1) -- (B_1) -- (C_1) -- (D_1) -- cycle;\n\\draw (A) -- (A_1) (B) -- (B_1) (C) -- (C_1);\n\\draw [dashed] (D) -- (D_1);\n\\draw ($(C_1)!0.5!(D_1)$) node [above] {$M$} coordinate (M);\n\\draw [dashed] (A_1)--(D)(B_1)--(D)(M)--(D);\n\\draw (A_1)--(M)--(B_1);\n\\end{tikzpicture}\n\\end{center}\n(1) 求三棱锥 $D-A_1B_1M$ 的体积;\\\\\n(2) 当点 $M$ 是棱 $C_1D_1$ 上的中点时, 求直线 $AB$ 与平面 $DA_1M$ 所成的角.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"023000": {
|
||||
"id": "023000",
|
||||
"content": "某纪念章从某年某月某日起开始上市, 通过市场调查, 得到该纪念章每 1 枚的市场价 $y$ (单位: 元)与上市时间 $x$ (单位: 天)的数据如下:\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|}\\hline 上市时间 $x$ 天 & 4 & 10 & 36 \\\\\n\\hline 市场价 $y$ 元 & 90 & 51 & 90 \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n(1) 根据上表数据, 从下列函数中选取一个恰当的函数描述该纪念章的市场价 $y$ 与上市时间 $x$ 的变化关系并说明理由: \\textcircled{1} $y=a x+b$; \\textcircled{2} $y=a x^2+b x+c$; \\textcircled{3} $y=a \\cdot \\log _b x$; \\textcircled{4} $y=k \\cdot a^x$;\\\\\n(2) 利用你选取的函数, 求该纪念章市场价最低时的上市天数及最低的价格.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"023001": {
|
||||
"id": "023001",
|
||||
"content": "已知两点 $F_1(-\\sqrt{3}, 0)$, $F_2(\\sqrt{3}, 0)$, 设圆 $O: x^2+y^2=4$ 与 $x$ 轴交于 $A, B$ 两点, 且动点 $P$ 满足:以线段 $F_2P$ 为直径的圆与圆 $O$ 相内切, 如图所示.\n记动点 $P$ 的轨迹为 $\\Gamma$, 过点 $F_2$ 与 $x$ 轴不重合的直线 $l$ 与轨迹 $\\Gamma$ 交于 $M, N$ 两点.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.7]\n\\draw [->] (-3,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-3) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw (0,0) circle (2);\n\\filldraw (-2,0) circle (0.05) node [below left] {$A$} coordinate (A);\n\\filldraw (2,0) circle (0.05) node [below right] {$B$} coordinate (B);\n\\filldraw ({-sqrt(3)},0) circle (0.05) node [below] {$F_1$} coordinate (F_1);\n\\filldraw ({sqrt(3)},0) circle (0.05) node [below] {$F_2$} coordinate (F_2);\n\\filldraw ({sqrt(3)/4},{sqrt(61)/8}) circle (0.05) node [above left] {$P$} coordinate (P);\n\\draw ($(F_2)!0.5!(P)$) circle ({13/16});\n\\end{tikzpicture}\n\\end{center}\n(1) 求轨迹 $\\Gamma$ 的方程;\\\\\n(2) 设线段 $MN$ 的中点为 $Q$, 直线 $OQ$ 与直线 $x=\\dfrac{4 \\sqrt{3}}{3}$ 相交于点 $R$, 求证: $\\overrightarrow{F_2R}\\perp l$;\\\\\n(3) 记 $\\triangle ABM, \\triangle ABN$ 的面积分别为 $S_1, S_2$,求 $|S_1-S_2|$ 的最大值及此时直线 $l$ 的方程.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"023002": {
|
||||
"id": "023002",
|
||||
"content": "有限个元素组成的集合 $A=\\{a_1, a_2, \\cdots, a_n\\}$($n \\in \\mathbf{N}$, $n \\geq 1$). 集合 $A$ 中的元素个数记为 $d(A)$. 定义 $A+A=\\{x+y | x \\in A, y \\in A\\}$. 集合 $A+A$ 的个数记为 $d(A+A)$. 当 $d(A+A) =\\dfrac{d(A) \\cdot(d(A)+1)}{2}$ 时, 称集合 $A$ 具有性质 $\\Gamma$.\\\\\n(1) 设集合 $M=\\{1, x, y\\}$ 具有性质 $\\Gamma$, 判断集合 $M$ 中的三个元素是否能组成等差数列, 请说明理由;\\\\\n(2) 设正数列 $\\{d_n\\}$ 的前 $n$ 项和为 $S_n$, 满足 $S_{\\mathrm{n}+1}=2S_n+\\dfrac{1}{3}$, 其中 $d_1=\\dfrac{1}{3}$, 数列 $\\{d_n\\}$ 中的前 2020 项: $d_1, d_2, d_3, \\cdots d_{2020}$ 组成的集合 $\\{d_1, d_2, \\cdots, d_{2020}\\}$ 记作 $D$, 将集合 $D+D$中的所有元素 $t_1, t_2, t_3, \\cdots, t_k$($k \\in \\mathrm{N}$, $k \\geq 1$) 从小到大进行排序, 即 $t_1, t_2, t_3, \\cdots, t_k$ 满足 $t_1<t_2<t_3<\\cdots<t_k$, 求 $t_{2020}$;\\\\\n(3) 已知集合 $C=\\{c_1, c_2, \\cdots, c_n\\}$, 其中数列 $\\{c_n\\}$ 是等比数列, $c_n>0$, 且公比是有理数,判断集合 $C$ 是否具有性质 $\\Gamma$, 说明理由.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
"ans": "",
|
||||
"solution": "",
|
||||
"duration": -1,
|
||||
"usages": [],
|
||||
"origin": "自拟题目",
|
||||
"edit": [
|
||||
"20240103\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
"remark": "",
|
||||
"space": "4em",
|
||||
"unrelated": []
|
||||
},
|
||||
"030001": {
|
||||
"id": "030001",
|
||||
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",
|
||||
|
|
|
|||
Reference in New Issue