{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "相同题目已标注: 000100 031239\n", "关联题目已标注: 000466 030610\n" ] } ], "source": [ "import os,re,json\n", "\n", "filename = \"临时文件/相似题目.txt\"\n", "\n", "# 读取题库数据并转换为字典\n", "with open(r\"../题库0.3/Problems.json\",\"r\",encoding = \"utf8\") as f:\n", " database = f.read()\n", "pro_dict = json.loads(database)\n", "\n", "# 读取已分类的相似文件列表\n", "with open(filename,\"r\",encoding = \"utf8\") as f:\n", " similar_text = \"\\n\"+f.read()\n", "\n", "similar_types = re.findall(r\"\\n[\\d]\\.[\\d]{4}[\\s]*([srSRnN ])[\\s]*\\n\",similar_text)\n", "similar_problems = re.findall(r\"\\n([\\d]{6}) \",similar_text)\n", "\n", "if len(similar_types) * 2 == len(similar_problems):\n", " for i in similar_types:\n", " id1 = similar_problems.pop(0)\n", " id2 = similar_problems.pop(0)\n", " if i.upper() == \"S\":\n", " if not id2 in pro_dict[id1][\"same\"]:\n", " pro_dict[id1][\"same\"].append(id2)\n", " if not id1 in pro_dict[id2][\"same\"]:\n", " pro_dict[id2][\"same\"].append(id1)\n", " print(\"相同题目已标注:\",id1,id2)\n", " elif i.upper() == \"R\":\n", " if not id2 in pro_dict[id1][\"related\"]:\n", " pro_dict[id1][\"related\"].append(id2)\n", " if not id1 in pro_dict[id2][\"related\"]:\n", " pro_dict[id2][\"related\"].append(id1)\n", " print(\"关联题目已标注:\",id1,id2)\n", "\n", "else:\n", " print(\"相似程度数据:\",len(similar_types),\"个, 相似题目:\",len(similar_problems),\"题. 数据有问题, 请检查.\")\n", "\n", "\n", "# 将题库字典转换为json文件并保存至原位\n", "database = json.dumps(pro_dict,indent=4,ensure_ascii=False)\n", "with open(r\"../题库0.3/Problems.json\",\"w\",encoding = \"utf8\") as f:\n", " f.write(database)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.8.8 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.15" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac" } } }, "nbformat": 4, "nbformat_minor": 2 }