ans 13512 $2$ 13513 $x=\mu$ 13514 可能异面, 可能相交 13515 $\dfrac{y^2}{15}+\dfrac{x^2}{16}=1$, $x\ne 0$ 13516 $[1,15]$ 13517 $-\dfrac 13$ 13518 $\dfrac 43$ 13519 $(-\infty,-1]\cup [3,+\infty)$ 13520 $\sqrt{3}$ 13521 $\pi$ 13522 A 13523 D 13524 B 13525 (1) $\dfrac{5}{12}\text{h}$; (2) 能, $v$的取值范围为$(\dfrac{9\sqrt{3}}2,\dfrac{\sqrt{559}}3]$ 13526 (1) 证明略; (2) $\dfrac{a_1}{a_2}\le \dfrac{a_1+a_3+\cdots+a_{2n-1}}{a_2+a_4+\cdots+a_{2n}}$, 当且仅当$n=1$或$d=0$时成立等号; (3) $2023^2$ 13527 $\{(0,1),(2,5)\}$ 13528 $x>1$且$y>1$ 13529 $\sqrt{2}$ 13530 $(-\infty,-8]\cup [2,+\infty)$ 13531 $[-2,2]$ 13532 $\dfrac 13$ 13533 $\dfrac{4\pi}{3}$ 13534 $20$ 13535 \textcircled{3}\textcircled{4} 13536 \textcircled{1}\textcircled{3}\textcircled{4} 13537 B 13538 C 13539 D 13540 (1) 甲与乙的平均数分别为$7$和$7$; (2) 甲与乙的方差分别为$3$和$1.2$; (3) 两人射击水平相当, 甲的发挥更稳定 13541 (1) $\dfrac 12$; (2) $\dfrac{4\sqrt{5}}5$ 13542 $3.5$ 13543 $\dfrac{20}{11}$ 13544 $a=\pm 1$ 13545 $-17$ 13546 $0.7$ 13547 $5$ 13548 $6\sqrt{3}$ 13549 $0.6$ 13550 $2\pi^2+16\pi$ 13551 $\dfrac 83$ 13552 C 13553 C 13554 B 13555 (1) $f(x)=\begin{cases}2^x-1+\log_2 (x+1), & x\ge 0, \\ 1-2^{-x}-\log_2(-x+1), & x<0;\end{cases}$ (2) $f(x)=-2^{x-2}+1-\log_2(x-1)$, $16.635$, 有$99.9\%$的把握认为患该疾病群体与为患该疾病群体的卫生习惯有差异; (2) 证明略, $R$的估计值为$6$ 13571 (1) $y=2x$; (2) $(-\infty,-1)$ 13572 $-\dfrac 12$ 13573 $2\pi$ 13574 $\dfrac{\sqrt{6}}2a^2$ 13575 $3x-y-2=0$ 13576 $-\dfrac{3}{25}\overrightarrow{b}$ 13577 $-2$ 13578 $\dfrac{2\sqrt{5}}5$ 13579 $[\dfrac 54,\dfrac{3\sqrt{17}}4]$ 13580 $77$ 13581 $4$ 13582 A 13583 B 13584 D 13585 (1) $0.89$; (2) $0.0014$ 13586 (1) $x^2-\dfrac{y^2}{3}=1$; (2) 证明略 13587 $\{1,2\}$ 13588 $2$ 13589 $6$ 13590 $3$ 13591 $5$ 13592 $-\sqrt{2}$ 13593 $\dfrac 16$ 13594 $-28$ 13595 $0.14$ 13596 $2$ 13597 $\ln 2$ 13598 $\dfrac{\sqrt{13}}2$ 13599 A 13600 C 13601 C 13602 B 13603 (1) $\dfrac\pi 6$; (2) $6+6\sqrt{3}$ 13604 (1) 证明略; (2) $\dfrac{\sqrt{6}}8$ 13605 (1) $X\sim \begin{pmatrix} 0 & 20 & 100\\ 0.2 & 0.32 & 0.48\end{pmatrix}$; (2) 应选择先回答B类问题 13606 (1) $\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$; (2) $2\sqrt{2}+\sqrt{17}$; (3) 定值为$34$ 13607 (1) $y=x$; (2) 在$[0,+\infty)$上是严格增函数; (3) 证明略 13608 $1$ 13609 $[\dfrac 12,1]$ 13610 $2\sqrt{3}$ 13611 $x\le \dfrac{a+b}{2}$, 等号成立当且仅当$a=b$ 13612 $2x-y+1=0$ 13613 $\dfrac{3\pi}{4}$ 13614 $115$ 13615 $-1$ 13616 如$x^2+(y-2)^2=1$等(答案不唯一) 13617 $(0,-4)$ 13618 $72$ 13619 $\dfrac 78$ 13620 B 13621 A 13622 C 13623 C 13624 (1) $\dfrac 13$; (2) 证明略 13625 (1) $a_n=3n-1$; (2) $S_n=\dfrac{21}{4}-\dfrac{6n+7}{4\cdot 3^{n-1}}$ 13626 (1) $V=x(3-2x)^2$, $x\in (0,\dfrac 32)$; (2) 当$x=\dfrac 12$时, $V$取到最大值$2$ 13627 (1) 最小正周期为$\pi$, 取值范围为$[-1,2]$; (2) $\sqrt{3}$ 13628 (1) $2$; (2) 双曲线方程为$x^2-\dfrac{y^2}{3}=1$, 过顶点$(2,0)$与$(-1,0)$ 13629 $4$或$-6$ 13630 $(\dfrac\pi 6,\dfrac{5\pi}6)$ 13631 $44$ 13632 $41$ 13633 $1$ 13634 $24$ 13635 $\dfrac{7\sqrt{3}}3\pi$ 13636 $20$ 13637 $2.5$ 13638 $76$元 13639 $p_1$,$p_4$ 13640 $\dfrac 34$ 13641 D 13642 B 13643 C 13644 B 13645 证明略 13646 (1) $\dfrac\pi 3$; (2) $(6,12]$ 13647 (1) $0.6$; (2) $x\sim \begin{pmatrix}0 & 10 & 20 & 30\\0.16 & 0.44 & 0.34 & 0.06\end{pmatrix}$, $E[X]=13$ 13648 (1) $\dfrac{x^2}3+y^2=1$; (2) $\sqrt{6}$; (3) $1$ 13649 (1) 在$(-1,1)$上是严格增函数, 在$(1,+\infty)$上是严格减函数; (2) $(-\infty,0]$; (3) 证明略 13650 $\{(0,0),(1,0),(-1,0)\}$ 13651 $7$ 13652 $-2$ 13653 $0$ 13654 $\dfrac{6\pi}{5}$ 13655 $0.75$ 13656 $(-6,2)$ 13657 $\dfrac{2\sqrt{3}}3$ 13658 $\dfrac{16}3$ 13659 $\dfrac\pi 6$ 13660 \textcircled{1}\textcircled{2}\textcircled{4} 13661 $12120$ 13662 B 13663 B 13664 D 13665 D 13666 (1) $1$; (2) $\arcsin\dfrac{\sqrt{3}}4$ 13667 (1) $\sqrt{7}$; (2) $-1-\dfrac{\sqrt{3}}2$ 13668 (1) $(x-2)^2+y^2=\dfrac{12}7$; (2) $\dfrac{3\sqrt{2}}2$或$\dfrac{\sqrt{2}}2$ 13669 (1) $\dfrac 25$; (2) $X\sim \begin{pmatrix} 0 & 1 & 2 \\ \dfrac{6}{25} & \dfrac{13}{25} & \dfrac{6}{25}\end{pmatrix}$; (3) 不认为人数有变化, 理由略 13670 (1) $y=x-1$; (2) $(-\infty,\dfrac{3}{2}]$; (3) $(-\infty,\dfrac{\sqrt{2}}2)$ 13671 $1$ 13672 $3$ 13673 $\dfrac 12$ 13674 $(0,2)$ 13675 $2$ 13676 $0.57$ 13677 $\dfrac 72+\sqrt{6}$ 13678 $\dfrac\pi 3$或$\dfrac{2\pi}3$ 13679 $\sqrt{5}$ 13680 $\dfrac{7\sqrt{3}}3$ 13681 $\dfrac 83$ 13682 $\dfrac 32$ 13683 A 13684 C 13685 A 13686 B 13687 (1) 证明略; (2) $\dfrac\pi 6$ 13688 (1) 证明略; (2) $(\dfrac 94,\dfrac{15}4)$ 13689 (1) $l=\dfrac{1}{\sin \theta}+\dfrac{1}{\cos\theta}+\dfrac{1}{\sin\theta\cdot \cos\theta}$, $\theta\in (\dfrac\pi 6,\dfrac\pi 3)$; (2) $2+2\sqrt{2}$, 此时$\theta=\dfrac\pi 4$ 13690 (1) $\dfrac{\sqrt{2}}2$; (2) $t=\dfrac{\sqrt{6}}3b$ 13691 (1) $a=1$, $b=0$; (2) $3$; (3) 证明略