ans 018366 (1) $x=\dfrac{\pi}{3}+2k\pi$或$\dfrac{2\pi}{3}+2k\pi$, $k\in \mathbf{Z}$; (2) $x=\pm \dfrac{3\pi}{4}+2k\pi$, $k\in \mathbf{Z}$; (3) $x=k\pi+\dfrac{\pi}{6}$, $k\in \mathbf{Z}$ 018367 (1) $\{\dfrac{\pi}{6},\dfrac{\pi}{3},\dfrac{7\pi}{6},\dfrac{4\pi}{3}\}$; (2) $\{x|x=2k\pi+\dfrac{\pi}{12}\text{或}x=2k\pi-\dfrac{5\pi}{12}, \ k\in \mathbf{Z}\}$; (3) $\{x|x=\dfrac{k\pi}{2}+\dfrac{\pi}{4}, \ k\in \mathbf{Z}\}$ 018369 (1) $x=-\dfrac{\pi}{2}+2k\pi$, $k\in \mathbf{Z}$; (2) $x=\pm \dfrac{\pi}{6}+2k\pi$, $k\in \mathbf{Z}$; (3) $x=\dfrac{\pi}{4}+k\pi$, $k\in \mathbf{Z}$ 009563 (1) $\{\dfrac{\pi}{2},\dfrac{11\pi}{6}\}$; (2) $\{x|x=k\pi+\dfrac{5\pi}{24}\text{或}k\pi-\dfrac{11\pi}{24}, \ k\in \mathbf{Z}\}$; (3) $\{x|x=\dfrac{k\pi}{3}+\dfrac{\pi}{6}, \ k\in \mathbf{Z}\}$ 018372 $\dfrac{\sqrt{6}-\sqrt{2}}{4}$, $\dfrac{\sqrt{6}+\sqrt{2}}{4}$ 018373 $-\dfrac{56}{65}$ 018375 $\dfrac{\pi}{3}$ 009564 (1) $\dfrac{\sqrt{2}}{2}$; (2) $\dfrac{\sqrt{3}}{2}$ 009565 $-\dfrac{7\sqrt{2}}{26}$ 018377 (1) $\dfrac{\sqrt{3}}{2}$; (2) $\cos 2\alpha$; (3) $-\cos 3x$ 018376 $-\dfrac{4}{5}$ 018378 $\dfrac{\sqrt{6}-\sqrt{2}}{4}$ 018379 证明略 018380 (1) $-1$; (2) $\dfrac{1}{7}$ 018381 $-\sqrt{3}$ 009567 (1) $\dfrac{\sqrt{3}}{2}$; (2) $\sqrt{3}$ 009568 $\dfrac{\sqrt{2}}{10}$, $7$ 009569 (1) 证明略; (2) 证明略 018385 证明略 018386 $(-\dfrac{\sqrt{2}}{2},\dfrac{3\sqrt{2}}{2})$ 018387 (1) $\sin(\alpha+\dfrac{\pi}{3})$; (2) $\sqrt{2}\sin(\alpha-\dfrac{\pi}{4})$; (3) $5\sin(\alpha+\varphi)$, 其中$\cos\varphi=\dfrac{3}{5}$, $\sin\varphi=\dfrac{4}{5}$; (4) $\sqrt{a^2+b^2}\sin(\alpha+\varphi)$, 其中$\cos\varphi=\dfrac{a}{\sqrt{a^2+b^2}}$, $\sin\varphi=\dfrac{b}{\sqrt{a^2+b^2}}$ 024614 $\{\alpha|\alpha=2k\pi\text{或}\dfrac{2\pi}{3}+2k\pi, \ k\in \mathbf{Z}\}$ 009570 $\sin C=\dfrac{220}{221}$, $\cos C=-\dfrac{21}{221}$ 009571 $\sin(\alpha+\beta)=\dfrac{33}{65}$, $\cos(\alpha+\beta)=-\dfrac{56}{65}$, $\alpha+\beta$是第二象限角 009572 (1) $\sqrt{2}\sin(\alpha+\dfrac{\pi}{4})$; (2) $2\sin(\alpha+\dfrac{2\pi}{3})$ 018390 $\dfrac{\sqrt{6}-\sqrt{2}}{4}$ 018402 证明略 018403 证明略 018404 证明略 009576 证明略 009577 证明略 009578 证明略 018405 证明略 040387 $\dfrac{5\pi}{3}$ 040388 $-1$ 040389 $-\dfrac{\pi}{3}$或$\dfrac{4\pi}{3}$ 040390 $-3$ 040391 $-2$ 040392 $-\dfrac{\sqrt{23}}{4}$ ans 041050 $2\sqrt{7}$, $(0,\pm \sqrt{7})$ 040971 $2\sqrt{7}$, $(\pm \sqrt{7},0)$ 041051 D 040972 $x=0(-3 \leq y \leq 3)$ 040973 B 040974 $\dfrac{x^2}7+\dfrac{y^2}{16}=1$ 040975 B 008878 D 008877 A 014470 $4\sqrt{3}$ 040976 $\dfrac{x^2}{25}+\dfrac{y^2}{16}=1$或$\dfrac{x^2}7+\dfrac{y^2}{16}=1$ 040977 (1)$\dfrac{x^2}{100}+\dfrac{y^2}{64}=1$; (2)$\dfrac{x^2}6+\dfrac{y^2}4=1$ 040978 (1)$k=7$;(2)$4\sqrt{3}$ 040995 (1)$y=-\sqrt12+\sqrt34$;(2)$x+4y=0$(点在已知椭圆内);(3)$x^2+x+2y^2=0$ 040996 $6\sqrt{5}$ 021204 $\dfrac{\sqrt{2}}{2}$ 021205 $2\sqrt{37}$,$2$ 021206 $\dfrac{x^2}{25}+\dfrac{y^2}{75}=1$ 021207 $\dfrac{x^2}{12}+\dfrac{y^2}{9}=1$或$\dfrac{x^2}{9}+\dfrac{y^2}{12}=1$ 021208 $[-\sqrt{34},\sqrt{34}]$ 021209 $\dfrac{\pi}3$ 040997 $b\sqrt{a^2-b^2}$ 040998 $8\sqrt{3}$ 021212 $P(-6,-4)$,$d=\dfrac{22}{\sqrt{73}}$ 021200 $\dfrac{x^2}{4}+y^2=1$ 021201 $-\dfrac{5\sqrt{7}}{4}0)$;(3)$x^2-\dfrac{y^2}{3}=1$ 021223 $\dfrac{x^2}{20}-\dfrac{y^2}{16}=1$ 021224 $\dfrac{x^2}{33-12\sqrt{6}}-\dfrac{y^2}{12\sqrt{6}-8}=1$或$\dfrac{y^2}{16}-\dfrac{x^2}{9}=1$ 021225 不正确, 正确结果为$17$ 021226 $\dfrac{x^2}{115600}-\dfrac{y^2}{134400}=1$ 021227 D 021228 $(-3,6)$ 021229 $m<-2$ 021230 $\dfrac{41}{4}$ 021231 $32+2m$ 021232 $|PF_1|=\dfrac{c}{a}x_0+a$,$|PF_2|=\dfrac{c}{a}x_0-a$ 021233 $x^2-\dfrac{y^2}{4}=1$ 041001 (1)$\dfrac{y^2}{18}-\dfrac{x^2}{18}=1$,$\sqrt{2}$;(2)$(\pm 2\sqrt{3},0)$,$\arctan{2\sqrt{2}}$ 041002 A,A,B,B 041003 (1))$\dfrac{x^2}{3}-\dfrac{y^2}{5}=1$;(2))$\dfrac{y^2}{81}-\dfrac{x^2}{9}=1$或)$x^2-\dfrac{y^2}{9}=1$ 021242 $\dfrac{x^2}{3}-\dfrac{y^2}{12}=1$ 021243 $y=\pm \dfrac{\sqrt{2}}{4}x$ 021244 证明略 041004 (1)$\dfrac{x^2}{\dfrac{81}{13}}-\dfrac{y^2}{\dfrac{36}{13}}=1$;(2)$2$或$\dfrac{2\sqrt{3}}{3}$; (3)$(\dfrac 52,\dfrac 72)$;(4)$(\pm \sqrt{7},0)$ 041005 D,A,D 021251 $a^2$ 021263 $\dfrac{y^2}{36}-\dfrac{x^2}{81}=1(x\neq 0)$ 021252 $\dfrac{c}{a}$ 021253 $y=\pm \sqrt{2}x$ 021254 $0$ 008917 $\dfrac{x^2}{4}-\dfrac{y^2}{5}=1$(x>0) 021255 $\dfrac{2\sqrt{3}}{3}$ 021256 $\dfrac{14\sqrt{3}}{3}$ 041006 $3$ 021258 $x^2-4y^2=\pm \dfrac{36}{5}$ 021259 $(-\dfrac{\sqrt{15}}{3},-1)$ 021260 (1)椭圆:$k<4$,双曲线: $4\dfrac{\sqrt{6}}{2},e\neq \sqrt{2}$;(2)$\dfrac{17}{13}$ ans 012360 $\dfrac{\pi}{3}$ 009305 (1)$x^15$,$-15x^14$,$105x^13$,$-455x^12$\\ (2)$-2099520a^9b^14$ 009306 (1)$\dfrac{105}{8}$;(2)$-252$ 009309 $120$ 009308 证明略 009317 (1)第$18$,$19$项; \\ (2)$\mathrm{C}_{35}^{27}3^{27}x^{27}$ 009319 证明略 021093 (1)$\dfrac{1}{45}$;(2)$\dfrac{7}{10}$ 022919 (1)$\dfrac{1}{36}$;(2)$\dfrac{1}{18}$;(3)$\dfrac{5}{12}$ 021095 (1)$\dfrac{1}{68880}$;(2)$\dfrac{1}{11480}$ 021096 $\dfrac37$ 021097 $\dfrac{1}{12}$ 021098 $\dfrac{18}{25}$ 021099 $\dfrac{2}{5}$ 021101 $\dfrac{11}{12}$ 021102 $\dfrac{3439}{10000}$ 021103 $\dfrac{n!}{n^n}$ 021104 $\dfrac{1}{15}$ 021105 $\dfrac15$ 021106 (1)$\dfrac{11}{42}$;(2)$\dfrac{31}{42}$ 021107 (1)$\dfrac{1279}{1785}$;(2)$\dfrac{59049}{139075300}$ 021108 (1)$\{5,7,9\}$;(2)$\{0,2,4,5,6,7,8,9\}$;(3)$\emptyset$ 021109 B 021110 (1)$\{1,2,3,4\}$;(2)A 021111 (1)$\{1,2,3,4\}$;(2)A 021112 充分非必要 021113 (1)$A\cup B$;(2)$A \cap \overline{B}$;(3)$(A \cap \overline{B}) \cup(\overline{A} \cap B) $ 021114 $B\subseteq \overline{A}$,$\overline{A}\cup \overline{B}=\omega$ 021116 (1)$\dfrac12$;(2)$\dfrac56$;(3)$\dfrac23$;(4)$\dfrac56$ 021117 (1)不是;(2)$0.94$ 021125 (1)$(A\cap B \cap \overline{C})\cup (A \cap \overline{B} \cap C)\cup (\overline{A} \cap B \cap C)\cup (A \cap B \cap C)$; (2)$\overline{A\cap B \cap C }$; (3)$(A\cap B \cap \overline{C})\cup (A \cap \overline{B} \cap C)\cup (\overline{A} \cap B \cap C)$ 021118 $\dfrac47$,$\dfrac27$,$\dfrac17$,$\dfrac67$,$\dfrac67$,$\dfrac57$ 019932 (1)$\dfrac34$;(2)$\dfrac1{13}$;(3)$\dfrac12$;(4)$\dfrac{51}{52}$ 021119 $\dfrac45$ 021120 $\dfrac35$ 021121 $\dfrac14$,$\dfrac16$,$\dfrac14$ 021122 $0.9$,$0.1$ 018762 证明略 021126 大数定律 021127 $\dfrac{73}{75}$ 021128 $\dfrac34$,$\dfrac{9}{44}$,$\dfrac{9}{220}$.$\dfrac{1}{220}$ 021129 (1)$0.46$;(2)$0.51$;(3)$0.97$ 021130 (1)$0.852$;(2)$25560$;(3)$5869$ 021131 (1)$0.1,0.06,0.025,0.02,0.02,0.02$;(2)$0.02$;(3)$40$ 021132 (1)$30\%$;(2)$53\%$;(3)$73\%$;(4)$14\%$;(5)$90\%$;(6)$10\%$; 021133 (1)$\dfrac13$;(2)$\dfrac14$ 021134 C 021135 (1)$\dfrac56$;(2)$\dfrac16$;(3)$\dfrac23$;(4)$\dfrac12$ 021136 (1)$0.995$;(2)$0.095$ 021137 (1)$7:1$;(2)$11:5$ 021138 $0.328$ 021139 $(\dfrac23,1)$ 021140 (1)$\dfrac38$,$\dfrac23$;(2)$\dfrac{21}{32}$ 021141 D 021142 D 021143 A 021144 A 021145 \textcircled{2} 021146 总体是$2487$万人的年龄, 样本是$24000$个常住居民的年龄, 样本量是$24000$ 021147 观测, 观测, 实验 021148 不可靠, 样本容量太小, 样本不一定具有代表性 021149 $2$ 021150 $122$ 021151 $a=b=10.5$ 021152 平均值是$17$,方差是$27$ 021153 平均数是$72.0$, 中位数是$70$, 方差是$74.9$ 021154 $\dfrac{n}{N}$ 021155 B 021156 20 021157 C 021158 $4467$ 021159 (1)抽签法;(2)分层抽样 021160 $49,04,40,36,16,08,06,55,33,69$ 021161 样本容量为$92$, 抽样人数为$31$ 021162 略 021163 分层抽样, 高一抽$18$人, 高二抽$22$人, 高三抽$10$人 021164 C 021165 $4$,$5.14$ 021166 $0.32$,$96$ 021167 $300$ 021168 集中, 分散, $6.88$,$12.43$ 021169 \begin{tabular}{c|ccccccc} 8 & 9 \\ 9 & 3 & 4 & 6 & 7 \\ 10 & 0 & 0 & 1 & 1 & 3 & 5 & 8\\ 11 & 0 & 2 \end{tabular} 021170 略 021171 略 021172 D 021173 $35$ 021174 $12$ 021177 C 021179 \textcircled{1},\textcircled{2} 021180 A 021175 甲更准, 乙更稳定 021176 (1)$3.47$,(2)$2773$ 021178 $100$ 021181 (1)$9.5$;(2)不能 021182 平均成绩是$89.6$, 总体方差是$12.09$ 023356 $A\subset C\subset B \subset E \subset D \subset G$;$E \subset F \subset G$ 023357 全错 023358 $\dfrac{72\sqrt{21}}7$ 023359 (1)$\dfrac16$;(2) 023360 $2\sqrt{15}$或$4\sqrt{6}$ 023361 略 023362 $\frac{b^2-a^2}{\sqrt{a^2+b^2} \cdot \sqrt{a^2+b^2+c^2}}$. 023363 (1) $\frac{1}{2}$; (2) $\frac{\pi}{3}$. 023364 (1) 略; (2) $\arcsin{\frac{3\sqrt{2}}{10}}$; (3) $\frac{24\sqrt{41}}{41}$ 023365 略 023366 $\sqrt{41}$ 023367 (1) 略; (2) $\frac{\pi}{4}$. 023368 $8\sqrt{3}$. 003494 (1) 略; (2) $3$; (3) $108\sqrt{3}$. 023369 (1) $48$; (2) $16\sqrt{3}+8\sqrt{21}+40$ 023370 (1) 略; (2) $\frac{1}{3}$; (3) $\frac{\sqrt{2}}{2}+\frac{\sqrt{6}}{2}$. 023108 C 023109 1; 4. 023110 8; 4. 023111 $M \in a$,$M \notin \alpha$. 023112 $\{1,4,6\}$. 023113 $D$. 023114 $C$. 023115 $A$. 023116 1个或者无数个 023117 平行四边形 023118 10 023119 \textcircled{1}, \textcircled{2} ,\textcircled{4}, \textcircled{5}. 023120 $D$. 012345 $D$. 023124 $\frac{5(\sqrt{6}-1)}{2} $. 023125 $\sqrt{2}+2\sqrt{13}$. 023126 (1) F ; (2) F; (3) F; (4) T; (5) T; (6) T; (7) T; (8) F. 023127 (1) T ; (2) F; (3) F; (4) F; (5) F. 023128 异面或者平行. 023129 (1) 平行; (2) 异面. 023130 相交或者平行. 023131 充分不必要. 023132 4个. 023133 $45^{\circ}$; $30^{\circ}$或$60^{\circ}$. 023134 (1) $\frac{\pi}{3}$; (2) $\arccos \frac{\sqrt{10}}{10}$; (3) $\arccos \frac{\sqrt{10}}{5}$. 023135 \textcircled{1} \textcircled{4}. 023136 $\frac{a}{3}$. 012345 D 023137 B 023140 $\frac{\pi}{4}$或$\frac{\pi}{3}$. 023141 (1) 点 $P$ 在$C$点; (2) 点 $P$ 在距离$C$点$\frac{16}{5}$. 023142 $\frac{\sqrt{39}}{2}$. 016740 1. 016731 8. 023143 $\arctan\frac{1}{5}$或者$\arctan\frac{4}{5}$. 023144 $\arctan\frac{2\sqrt{5}}{5}$. 017767 2 023145 $\sqrt{6}$. 023146 $\frac{\sqrt{3}}{3}$. 023147 $[ 30,90 ]$. 023148 (1) $\frac{\sqrt{15}}{5}$; (2) $\frac{\pi}{6}$. 023149 $\frac{\sqrt{3}}{2}$. 023150 $\frac{2}{3}$. 023151 (1) $\arctan \frac{\sqrt{5}}{5}$; (2) $\arccos \frac{\sqrt{30}}{10}$; (3) 在 $BC$ 边上存在一点 $G$, $BG$的值为1. 023152 (1) 略; (2) $\arcsin \frac{\sqrt{21}}{7}$; (3) 存在 $P$, 使得 $DE \parallel $ 平面 $BMP$, $\dfrac{AP}{DP}$ 的值3. 031552 $\frac{\sqrt{10}}{5}$ 003489 (1) $\arcsin \frac{\sqrt{6}}{3}$; (2) $\arcsin \frac{\sqrt{3}}{3}$; (3) $\frac{\pi}{4}$. 023153 (1) $\frac{\sqrt{6}}{3}$; (2) $\frac{\sqrt{6}}{6}$; (3) $\frac{\sqrt{6}}{6}$. 003456 $\frac{3\sqrt{5}}{5}$. 003457 $\frac{\pi}{3}$或$\frac{2\pi}{3}$. 023154 1或3. 023155 $\frac{\pi}{3}$. 023156 \textcircled{1}\textcircled{2}\textcircled{3}\textcircled{5}. 023157 B 023158 B 023159 A 023160 $\frac{\pi}{3}$. 023161 4.3 023162 (1) 略; (2) $\frac{\sqrt{3}}{2}$; (3) $\arcsin \frac{2\sqrt{5}}{5}$. 023163 (1) $\frac{\pi}{2}$; (2) $\frac{\pi}{3}$. 023164 (1) 四边形 $MNDC$为矩形; (2) $\arctan \frac{\sqrt{2}}{2}$; (3) $\frac{\sqrt{2}}{2}$. 023165 (1) 异面直线 $D_1E$ 与 $A_1D$ 所成角的大小不会随点 $E$ 的移动而改变, 所成角为$\frac{\pi}{2}$; \\(2) 点 $E$距离点 $A$ 为$2-\sqrt{3}$, 二面角 $D_1-EC-D$ 的大小为 $\dfrac{\pi}{4}$; \\(3) 直线 $AD_1$ 平行于 平面 $B_1DE$. 023166 \textcircled{2}\textcircled{3} 023167 $75^{\circ}$ 010502 arctan$\frac{\sqrt{5}}{5}$ 023168 arccos$\frac{2}{3}$ 023169 $\frac{\pi}{4}$ 023170 $\sqrt{41}$或$13$ 023171 $6$或$1.5$ 023172 $30^{\circ}$ 023173 $3.5cm$ 023174 $\frac{\sqrt{2}}{2}$ 023175 B 023176 $A$ 023177 $D$ 023178 $(1)$略; $(2)\frac{\sqrt{14}}{14}$ 023179 $(1)\frac{\pi}{6};(2)arccos\frac{\sqrt{3}}{3}$ 023180 $(1)$略; $(2)arctan\frac{\sqrt{6}}{2}$;$(3)$略; $(4)\frac{\sqrt{2}}{6}$ 023181 无 011402 A 023182 B. 023183 2. 023184 5. 023185 $\sqrt{29}$. 023186 $\frac{\pi}{6}$. 023187 $\frac{15\sqrt{3}}{2}$ 017677 $DM\perp PC$(或$BM\perp PC$) 023188 \textcircled{1}\textcircled{2}\textcircled{4} 023189 (1)略; (2)$arccos\frac{\sqrt{15}}{5}$ 023190 (1)略; (2)6. 023191 $S=\begin{cases}\frac{1}{2cos\alpha},\quad\alpha\in(0,arctan\sqrt{2}]\\ \frac{\sqrt{2}-cot\alpha}{sin\alpha},\alpha\in(arctan\sqrt{2},\frac{\pi}{2}]\end{cases}$ 023192 (1)略; (2)$\frac{2\sqrt{6}}{3}$. 023193 $8$. 023194 $arctan\frac{\sqrt{3}}{2}$. 023195 $64.$ 023196 $arctan\sqrt{2}$. 023197 $10.$ 023198 $(1)$外心; $(2)$内心; $(3)$垂心. 023199 $\sqrt{3}$ 023200 $48$. 023201 $\frac{6}{7}$. 023202 A. 023203 $S=32,V=16$. 023204 $\frac{2\sqrt{11}}{11}$. 023205 $(1)$略; $(2)\frac{5}{3}$. 023206 $(1)V=a^2;(2)$\textcircled{1}$\frac{\sqrt{51}}{9}$;\textcircled{2}$\frac{\sqrt{30}}{3}$. 023207 $\sqrt{29}$. 023208 $\frac{\sqrt{6}}{3}$. 023209 $arctan\frac{\sqrt{5}}{5}$. 023210 $arccos\frac{2}{3}$. 023211 $\frac{\pi}{6}$. 023212 $\frac{15\sqrt{3}}{2}$. 023213 $3\pi^2$或$\frac{9}{2}\pi^2$. 023214 $\frac{\sqrt{3}}{2}a$. 023215 $\pi$. 023216 $\sqrt{2}:1$. 023217 $1:4:9$. 023218 $\frac{8}{3}\pi$. 023219 $12:15:20$. 023220 $576$. 023221 $\theta_{min}=\pi-arctan\frac{4}{3}$,此时$P$ 在线段 $A_1C_1$ 的中点. 023222 略. 023223 $(1)$略; $(2)arctan\sqrt{2}$;$(3)$是, $\frac{\sqrt{6}}{24}$. 023224 $P^{6}_{20-m}$. 023225 $60$. 023226 $48$. 023227 $6$. 023228 $6$. 023229 $156$. 023230 $103$. 023231 $48$. 023232 $(\frac{2}{3},1)$. 023233 $a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2 \end{cases}$. 023234 (1)$m=9$;(2)$k_{n}=3^{n+1}+2$. 023235 $(-\frac{1}{11},-\frac{1}{19})$. 023236 (1)略; (2)$S_{n}=\frac{2}{3}-(n+\frac{2}{3})(\frac{1}{4})^{n}$;(3)$(-\infty,-5]\cup[1,+\infty)$. 023237 $1716$. 023238 5或8. 023239 $x=15,y=5$. 023240 21. 023241 6. 016908 12. 023242 540. 023243 2880. 023244 200. 023245 $-1$. 023246 $2^{n-1},n\in \mathbf{N}$且$n\ge1$. 023247 $2^{n-1},n\in \mathbf{N}$且$n\ge1$. 023248 $7(\frac{1}{3})^{n-1}-6,n\in \mathbf{N}$且$n\ge1$. 023249 $765$. 023250 (1)58409520;(2)6275430;(3)64684945;(4)64682995. 023251 $92$. 023256 $\frac{3}{5}$ 023257 $\frac{3}{7}$ 023258 $\frac{1}{35}$ 031430 $\frac{14}{33}$ 017716 $\frac{3}{10}$ 017041 $\frac{3}{4}$ 023259 $\frac{2}{7}$ 023260 $\frac{2}{27}$ 023261 $\frac{9}{10}$ 023262 $-49$ 023263 $12$ 023264 $\frac{5}{6}$ 023265 (1) $d_1, d_2, d_3$ 的值分别为2,3,6;\\ (2) 略; (3) 略. 023266 $0.54$ 023267 $\dfrac{5}{36}$; $\dfrac{5}{12}$ 023268 $\dfrac{3}{8}$; $\dfrac{7}{8}$ 023269 $0.88$ 023270 $0.9$ 023271 $7$或$8$ 002651 $7$ 023272 (1) F; (2) F; (3) T; (4) F. 023273 (1) $\dfrac{4}{15}$; (2) $\dfrac{11}{15}$ 023274 (1) $\dfrac{70}{323}$; (2) $\dfrac{728}{969}$; (3) $\dfrac{27}{128}$ 023275 (1) $\dfrac{211}{3456}$; (2) $\dfrac{7}{10}$; (3) $\dfrac{1}{15}$ 023276 (1) $c_n=2n-1$; (2) $S_n=1+(n-1)3^n$ 023277 $18$ 023278 B 023279 A 023280 C 023281 B 023282 C 023283 $55$ 023284 $50$; $1015$ 023285 $3$ 023286 $n=1$时, $a_n=5$; $n \geq 2$时, $a_n=2n-2$ 023287 $2^n+3$ 023288 $1049410$ 023289 $19$ 023290 (1) $0.5$; (2) $\frac{3}{16}$; (3) 略 023291 (1) $\{a_n\}-3n+15$; (2) $T_n=\frac{1}{6}(\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2})$ 023292 (1) $P_3=-2p^3+3p^2$; $P_4=4p^3-3p^4$; (2) 当$02.1$,可以达到 022869 (1)$1$; (2)$(0,\arctan\dfrac{1}{2})$ 022870 (1)$6$; (2)正确, 证明略