ans
024871
B
024872
A
024873
D
024874
$[\dfrac{1}{2},1]$
024875
$[-1,0)\cup (3,4)$
024876
$\{(2,3)\}$
024877
D
024878
A
024879
D
024880
$3$
024881
$a\le \dfrac{1}{3}$
024882
$a\ge \dfrac{1}{5}$
024883
$\{a_2,a_4\}$, $\{a_1,a_2,a_4\}$, $\{a_2,a_3,a_4\}$, $\{a_1,a_2,a_3,a_4\}$
024884
$\{0,1\}$
024885
$(-\infty,-1]\cup \{1\}$
024886
\textcircled{4}
024887
B
024888
C
024889
充分非必要条件, 理由略
024890
(1) 证明略; (2) 证明略
024891
(1) $(1,+\infty)$; (2) $[-3,1]$
024892
$-3b^2$
024893
$1.82$
024894
$3$或$\dfrac{1}{3}$
024895
$(1,5)$
024896
$-1$
024897
$(-\infty,2]$
024898
$\dfrac{5}{2}$
024899
$2$
024900
$(2,5)$
024901
$3$
024902
C
024903
$[-6,1]$
024904
(1) $f(x)=\begin{cases}
\log_2 \dfrac{1}{x}, & x>0, \\ 0, & x=0, \\ -\log_2(-\dfrac{1}{x}), & x<0;
\end{cases}$ (2) 解集为$(-\log_2 3,+\infty)$
024905
(1) $(-\infty,-1]\cup [3,+\infty)$; (2) $(-\infty,3]$
024906
(1) $(-\infty,-\dfrac{3}{4}]$; (2) $\sqrt{3}$
024907
$-\dfrac{27}{19}$
024908
B
024909
$(1,\dfrac{3}{2}]$
024910
(1) $y=\begin{cases}
4t, & 0\le t<1, \\ (\dfrac{1}{2})^{t-3}, & t\ge 1;
\end{cases}$ (2) $\dfrac{79}{16}$
024911
$[\dfrac{1}{2},\dfrac{7}{2}]$
024912
(1) 证明略; (2) $(1,\dfrac{3}{2}]\cup \{2,3\}$
024913
D
024914
B
024915
C
024916
$\dfrac{1}{100}$
024917
$2$
024918
C
024919
A
024920
D
024921
C
024922
$(0,1]$
024923
$5$
024924
B
024925
$(-\infty,2]$
024926
(1) \begin{tikzpicture}[>=latex, scale = 0.6]
\draw [->] (-4,0) -- (4,0) node [below] {$x$};
\draw [->] (0,-5) -- (0,5) node [left] {$y$};
\draw (0,0) node [above left] {$O$};
\draw (-2,0) node [below left] {$-2$} (2,0) node [below right] {$2$} (0,-2) node [above right] {$-2$} (0,2) node [below right] {$2$} (0,4) node [below right] {$4$};
\foreach \i in {-5,-4,-3,-2,-1,1,2,3,4,5}
{\draw [dashed] (-4,\i) -- (4,\i);};
\foreach \i in {-4,-3,-2,-1,1,2,3,4}
{\draw [dashed] (\i,-5) -- (\i,5);};
\draw [domain = {-1-sqrt(6)}:0, samples = 100] plot (\x,{\x*(\x+2)});
\draw [domain = 0:{1+sqrt(6)}, samples = 100] plot (\x,{-\x*(\x-2)});
\end{tikzpicture} (2) $f(x)=-x^2+2x$($x>0$); (3) $(-1,1)$
024927
$(1,+\infty)$
024928
C
024929
C
024930
$-4$; $8$
024931
(1) $k=1$; (2) $Q(x)=125-|x-25|$($1\le x\le 30$, $x\in \mathbf{N}$); (3) $121$
024932
$(\dfrac{1}{3},-\dfrac{29}{27})$
024933
$0$; $(0,2)$
025063
B
025064
$\dfrac{2\sqrt{2}}{3}$
025065
$5$
025066
$-\dfrac{23}{16}$
025067
C
025068
B
025069
$-\dfrac{60}{169}$; $-\dfrac{12}{5}$
025070
$\dfrac{1}{3}$
025071
$\dfrac{7}{25}$
025072
B
025073
A
025074
D
025075
存在, $\alpha=\dfrac{\pi}{4}$, $\beta=\dfrac{\pi}{6}$
013851
(1) $28.28$米; (2) $26.93$米
025076
\textcircled{1}\textcircled{3}
025077
\textcircled{1}\textcircled{2}\textcircled{4}
025078
若选择\textcircled{1}, $a=8$, $b=3$; 若选择\textcircled{2}, $a=6$, $b=5$
025079
$2+\dfrac{3\sqrt{2}}{2}$
025080
C
025081
(1) $\sqrt{6}+\sqrt{2}$; (2) 证明略; (3) 当$a>2R$或$a=b=2R$时, $\triangle ABC$不存在; 当$b=latex]
\draw (0,0) node [below right] {$A$} coordinate (A);
\draw (-1,0) node [below] {$B$} coordinate (B);
\draw (B) ++ (130:2) node [above] {$C$} coordinate (C);
\draw (C) ++ (1,0) node [above] {$D$} coordinate (D);
\draw (-2,0) node [below] {西} coordinate (l) -- (-1,0);
\draw [->] (0,0) -- (1,0) node [below] {东};
\draw [->] (0,-1) node [right] {南} -- (0,2) node [right] {北};
\draw (B) pic [draw, "$50^\circ$", scale = 0.5, angle eccentricity = 2.5] {angle = C--B--l};
\draw [->] (A)--(B);
\draw [->] (B)--(C);
\draw [->] (C)--(D);
\draw [->] (A)--(D);
\end{tikzpicture}
024966
(1) $\dfrac{1}{3}$; (2) $(-\dfrac{1}{2},\dfrac{1}{2})$
024967
(1) $(\sqrt{10},-2\sqrt{2})$或$(-\sqrt{10},2\sqrt{2})$; (2) $\dfrac{39}{8}$
024968
$14$; $10$
024969
$\dfrac{4}{3}$
024970
A
024971
(1) $\sqrt{3}$, $\dfrac{\sqrt{7}}{2}$; (2) 是定值$\dfrac{7}{8}$
032864
$\sqrt{7}$
024972
A
024973
D
024974
B
024975
D
024976
C
024977
B
024978
\textcircled{1}\textcircled{4}
024979
$\sqrt{2}$
024980
$-1$
024981
$\pm 4$
024982
B
024983
$5\sqrt{2}$; 一
024984
(1) $\dfrac{1}{2}$; (2) $(-\infty,-\dfrac{3}{2})$
024985
$-\dfrac{5}{3}$或$\dfrac{\sqrt{14}}{2}$
040763
$(x+y)(x-y)(x+y\mathrm{i})(x-y\mathrm{i})$
040764
$\dfrac{1}{12}$
024986
\textcircled{4}
024987
$\dfrac{3}{5}$或$\dfrac{5}{3}$或$-1$
024988
A
024989
$(-\infty,2-2\sqrt{2})\cup (2+\sqrt{2},+\infty)$
024990
$-10102$
024991
$(\dfrac{5}{4},\dfrac{10}{7}]$
024992
$-360$
024993
$68$
024994
$\begin{cases}
6n-1, & n\ge 2,\\ 6, & n=1
\end{cases}$
024995
$16$
024996
D
024997
$7$
024998
$\dfrac{3}{4}(9^n-1)$
024999
$\dfrac{4}{3}$
025000
$3^n-2$
025001
$-\dfrac{1}{2021}$
025002
(1) $a_n=\begin{cases}
\dfrac{1}{2}, & n=1, \\ 4, & n\ge 2;
\end{cases}$ (2) $T_n=2^{\frac{n(n-1)}{2}}$($n\in \mathbf{N}$, $n\ge 1$)
025003
有最大项, 最大项为$\dfrac{10^{10}}{11^9}$, 序数为$9$或$10$
025004
证明略
025005
B
025006
D
025007
(1) 证明略; (2) $(-\infty,-\dfrac{1}{3}]\cup [3,+\infty)$
025008
D
025009
$(-2,4)$
025010
$-6$
025011
$4$
025012
$\dfrac{1}{2}$
025013
$-\dfrac{\sqrt{3}}{3}$
025014
$2$
025015
$y=x-2$
025016
$4$
025017
$\dfrac{7\sqrt[8]{x^7}}{8x}$, $2\cos 2x$, $\dfrac{\mathrm{e}^x(x-1)}{x^2}$, $-\dfrac{1}{\sin^2 x}$, $\dfrac{2}{2x+1}-\mathrm{e}^{-x}(\cos 2x+2\sin 2x)$
025018
$-1$
025019
$[3,+\infty)$
025020
$(-\infty,0]\cup [3,+\infty)$
025021
$(-\dfrac{4}{3},\dfrac{28}{3})$
025022
$7.2$元, $20\mathrm{km}/\mathrm{h}$
025023
(1) $y=-4x+5$; (2) 在$(-\infty,-1]$和$[4,+\infty)$上严格增, 在$[-1,4]$上严格减, 最大值为$1$, 最小值为$-\dfrac{1}{4}$
025024
\textcircled{2}\textcircled{3}\textcircled{4}
025025
(1) $f'(x)=a\mathrm{e}^x\ln x+\dfrac{a\mathrm{e}^x}{x}+\dfrac{b\mathrm{e}^{x-1}x-b\mathrm{e}^{x-1}}{x^2}$; (2) $a=1$, $b=2$
025026
$1$
025027
$(-10,-2)$
025028
D
025029
(1) 最小值为$-\dfrac{1}{\mathrm{e}}$, 最大值为$0$; (2) $[1,+\infty)$
025030
$1$
025031
$\dfrac{1}{2}$
025032
$-\sqrt{3}$
025033
$[\dfrac{\pi}{12},\dfrac{\pi}{2}]$
025034
$2-\ln 2$
025035
$-6$
025036
$2$
025037
$\sqrt{3}$
025038
$\dfrac{\pi}{3}$
025039
C
025040
A
025041
B
025042
(1) $m=-4$, $n=5$; (2) $2\sqrt{3}$
025043
(1) $\pi-\arccos\dfrac{7\sqrt{19}}{38}$; (2) $(-\infty,-6)\cup (-6,\dfrac{7}{2})$
025044
(1) $AC=100\sqrt{7}$米, 原花园建筑用地$ABCD$的面积为$20000\sqrt{3}$平方米; (2) 当$\triangle ACP$为正三角形时, 新建筑用地面积最大, 最大值为$22500\sqrt{3}$平方米
019882
(1) $2$; (2) 定值为$6$, 证明略; (3) 存在, 最小值为$-2$
025045
(1) 极小值为$2-2\ln 2$, 无极大值; (2) 当$-2