ans 024871 B 024872 A 024873 D 024874 $[\dfrac{1}{2},1]$ 024875 $[-1,0)\cup (3,4)$ 024876 $\{(2,3)\}$ 024877 D 024878 A 024879 D 024880 $3$ 024881 $a\le \dfrac{1}{3}$ 024882 $a\ge \dfrac{1}{5}$ 024883 $\{a_2,a_4\}$, $\{a_1,a_2,a_4\}$, $\{a_2,a_3,a_4\}$, $\{a_1,a_2,a_3,a_4\}$ 024884 $\{0,1\}$ 024885 $(-\infty,-1]\cup \{1\}$ 024886 \textcircled{4} 024887 B 024888 C 024889 充分非必要条件, 理由略 024890 (1) 证明略; (2) 证明略 024891 (1) $(1,+\infty)$; (2) $[-3,1]$ 024892 $-3b^2$ 024893 $1.82$ 024894 $3$或$\dfrac{1}{3}$ 024895 $(1,5)$ 024896 $-1$ 024897 $(-\infty,2]$ 024898 $\dfrac{5}{2}$ 024899 $2$ 024900 $(2,5)$ 024901 $3$ 024902 C 024903 $[-6,1]$ 024904 (1) $f(x)=\begin{cases} \log_2 \dfrac{1}{x}, & x>0, \\ 0, & x=0, \\ -\log_2(-\dfrac{1}{x}), & x<0; \end{cases}$ (2) 解集为$(-\log_2 3,+\infty)$ 024905 (1) $(-\infty,-1]\cup [3,+\infty)$; (2) $(-\infty,3]$ 024906 (1) $(-\infty,-\dfrac{3}{4}]$; (2) $\sqrt{3}$ 024907 $-\dfrac{27}{19}$ 024908 B 024909 $(1,\dfrac{3}{2}]$ 024910 (1) $y=\begin{cases} 4t, & 0\le t<1, \\ (\dfrac{1}{2})^{t-3}, & t\ge 1; \end{cases}$ (2) $\dfrac{79}{16}$ 024911 $[\dfrac{1}{2},\dfrac{7}{2}]$ 024912 (1) 证明略; (2) $(1,\dfrac{3}{2}]\cup \{2,3\}$ 024913 D 024914 B 024915 C 024916 $\dfrac{1}{100}$ 024917 $2$ 024918 C 024919 A 024920 D 024921 C 024922 $(0,1]$ 024923 $5$ 024924 B 024925 $(-\infty,2]$ 024926 (1) \begin{tikzpicture}[>=latex, scale = 0.6] \draw [->] (-4,0) -- (4,0) node [below] {$x$}; \draw [->] (0,-5) -- (0,5) node [left] {$y$}; \draw (0,0) node [above left] {$O$}; \draw (-2,0) node [below left] {$-2$} (2,0) node [below right] {$2$} (0,-2) node [above right] {$-2$} (0,2) node [below right] {$2$} (0,4) node [below right] {$4$}; \foreach \i in {-5,-4,-3,-2,-1,1,2,3,4,5} {\draw [dashed] (-4,\i) -- (4,\i);}; \foreach \i in {-4,-3,-2,-1,1,2,3,4} {\draw [dashed] (\i,-5) -- (\i,5);}; \draw [domain = {-1-sqrt(6)}:0, samples = 100] plot (\x,{\x*(\x+2)}); \draw [domain = 0:{1+sqrt(6)}, samples = 100] plot (\x,{-\x*(\x-2)}); \end{tikzpicture} (2) $f(x)=-x^2+2x$($x>0$); (3) $(-1,1)$ 024927 $(1,+\infty)$ 024928 C 024929 C 024930 $-4$; $8$ 024931 (1) $k=1$; (2) $Q(x)=125-|x-25|$($1\le x\le 30$, $x\in \mathbf{N}$); (3) $121$ 024932 $(\dfrac{1}{3},-\dfrac{29}{27})$ 024933 $0$; $(0,2)$ 025063 B 025064 $\dfrac{2\sqrt{2}}{3}$ 025065 $5$ 025066 $-\dfrac{23}{16}$ 025067 C 025068 B 025069 $-\dfrac{60}{169}$; $-\dfrac{12}{5}$ 025070 $\dfrac{1}{3}$ 025071 $\dfrac{7}{25}$ 025072 B 025073 A 025074 D 025075 存在, $\alpha=\dfrac{\pi}{4}$, $\beta=\dfrac{\pi}{6}$ 013851 (1) $28.28$米; (2) $26.93$米 025076 \textcircled{1}\textcircled{3} 025077 \textcircled{1}\textcircled{2}\textcircled{4} 025078 若选择\textcircled{1}, $a=8$, $b=3$; 若选择\textcircled{2}, $a=6$, $b=5$ 025079 $2+\dfrac{3\sqrt{2}}{2}$ 025080 C 025081 (1) $\sqrt{6}+\sqrt{2}$; (2) 证明略; (3) 当$a>2R$或$a=b=2R$时, $\triangle ABC$不存在; 当$b=latex] \draw (0,0) node [below right] {$A$} coordinate (A); \draw (-1,0) node [below] {$B$} coordinate (B); \draw (B) ++ (130:2) node [above] {$C$} coordinate (C); \draw (C) ++ (1,0) node [above] {$D$} coordinate (D); \draw (-2,0) node [below] {西} coordinate (l) -- (-1,0); \draw [->] (0,0) -- (1,0) node [below] {东}; \draw [->] (0,-1) node [right] {南} -- (0,2) node [right] {北}; \draw (B) pic [draw, "$50^\circ$", scale = 0.5, angle eccentricity = 2.5] {angle = C--B--l}; \draw [->] (A)--(B); \draw [->] (B)--(C); \draw [->] (C)--(D); \draw [->] (A)--(D); \end{tikzpicture} 024966 (1) $\dfrac{1}{3}$; (2) $(-\dfrac{1}{2},\dfrac{1}{2})$ 024967 (1) $(\sqrt{10},-2\sqrt{2})$或$(-\sqrt{10},2\sqrt{2})$; (2) $\dfrac{39}{8}$ 024968 $14$; $10$ 024969 $\dfrac{4}{3}$ 024970 A 024971 (1) $\sqrt{3}$, $\dfrac{\sqrt{7}}{2}$; (2) 是定值$\dfrac{7}{8}$ 032864 $\sqrt{7}$ 024972 A 024973 D 024974 B 024975 D 024976 C 024977 B 024978 \textcircled{1}\textcircled{4} 024979 $\sqrt{2}$ 024980 $-1$ 024981 $\pm 4$ 024982 B 024983 $5\sqrt{2}$; 一 024984 (1) $\dfrac{1}{2}$; (2) $(-\infty,-\dfrac{3}{2})$ 024985 $-\dfrac{5}{3}$或$\dfrac{\sqrt{14}}{2}$ 040763 $(x+y)(x-y)(x+y\mathrm{i})(x-y\mathrm{i})$ 040764 $\dfrac{1}{12}$ 024986 \textcircled{4} 024987 $\dfrac{3}{5}$或$\dfrac{5}{3}$或$-1$ 024988 A 024989 $(-\infty,2-2\sqrt{2})\cup (2+\sqrt{2},+\infty)$ 024990 $-10102$ 024991 $(\dfrac{5}{4},\dfrac{10}{7}]$ 024992 $-360$ 024993 $68$ 024994 $\begin{cases} 6n-1, & n\ge 2,\\ 6, & n=1 \end{cases}$ 024995 $16$ 024996 D 024997 $7$ 024998 $\dfrac{3}{4}(9^n-1)$ 024999 $\dfrac{4}{3}$ 025000 $3^n-2$ 025001 $-\dfrac{1}{2021}$ 025002 (1) $a_n=\begin{cases} \dfrac{1}{2}, & n=1, \\ 4, & n\ge 2; \end{cases}$ (2) $T_n=2^{\frac{n(n-1)}{2}}$($n\in \mathbf{N}$, $n\ge 1$) 025003 有最大项, 最大项为$\dfrac{10^{10}}{11^9}$, 序数为$9$或$10$ 025004 证明略 025005 B 025006 D 025007 (1) 证明略; (2) $(-\infty,-\dfrac{1}{3}]\cup [3,+\infty)$ 025008 D 025009 $(-2,4)$ 025010 $-6$ 025011 $4$ 025012 $\dfrac{1}{2}$ 025013 $-\dfrac{\sqrt{3}}{3}$ 025014 $2$ 025015 $y=x-2$ 025016 $4$ 025017 $\dfrac{7\sqrt[8]{x^7}}{8x}$, $2\cos 2x$, $\dfrac{\mathrm{e}^x(x-1)}{x^2}$, $-\dfrac{1}{\sin^2 x}$, $\dfrac{2}{2x+1}-\mathrm{e}^{-x}(\cos 2x+2\sin 2x)$ 025018 $-1$ 025019 $[3,+\infty)$ 025020 $(-\infty,0]\cup [3,+\infty)$ 025021 $(-\dfrac{4}{3},\dfrac{28}{3})$ 025022 $7.2$元, $20\mathrm{km}/\mathrm{h}$ 025023 (1) $y=-4x+5$; (2) 在$(-\infty,-1]$和$[4,+\infty)$上严格增, 在$[-1,4]$上严格减, 最大值为$1$, 最小值为$-\dfrac{1}{4}$ 025024 \textcircled{2}\textcircled{3}\textcircled{4} 025025 (1) $f'(x)=a\mathrm{e}^x\ln x+\dfrac{a\mathrm{e}^x}{x}+\dfrac{b\mathrm{e}^{x-1}x-b\mathrm{e}^{x-1}}{x^2}$; (2) $a=1$, $b=2$ 025026 $1$ 025027 $(-10,-2)$ 025028 D 025029 (1) 最小值为$-\dfrac{1}{\mathrm{e}}$, 最大值为$0$; (2) $[1,+\infty)$ 025030 $1$ 025031 $\dfrac{1}{2}$ 025032 $-\sqrt{3}$ 025033 $[\dfrac{\pi}{12},\dfrac{\pi}{2}]$ 025034 $2-\ln 2$ 025035 $-6$ 025036 $2$ 025037 $\sqrt{3}$ 025038 $\dfrac{\pi}{3}$ 025039 C 025040 A 025041 B 025042 (1) $m=-4$, $n=5$; (2) $2\sqrt{3}$ 025043 (1) $\pi-\arccos\dfrac{7\sqrt{19}}{38}$; (2) $(-\infty,-6)\cup (-6,\dfrac{7}{2})$ 025044 (1) $AC=100\sqrt{7}$米, 原花园建筑用地$ABCD$的面积为$20000\sqrt{3}$平方米; (2) 当$\triangle ACP$为正三角形时, 新建筑用地面积最大, 最大值为$22500\sqrt{3}$平方米 019882 (1) $2$; (2) 定值为$6$, 证明略; (3) 存在, 最小值为$-2$ 025045 (1) 极小值为$2-2\ln 2$, 无极大值; (2) 当$-2