ans 010689 证明略 041040 (1) $\overrightarrow{a}=(1,0,0)$.\\ (2) $\overrightarrow{b}=(0,1,0)$.\\ (3) $\overrightarrow{c}=(3 \sqrt{2}, 0,4)$.\\ (4) $\overrightarrow{d}=(0,3 \sqrt{2}, 8)$. 041041 (1) 平面 $AA_1D_1D$.\\ (2) 平面 $BB_1D_1D$. 010793 (1)$\dfrac34$\\(2)变大 041042 (1)$y=4x-2$\\(2)$[\dfrac{\pi}{4},\dfrac{\pi}{2})$ 022023 (1)$(2,4)$\\(2)$(-\dfrac32,\dfrac94)$\\(3)$(\dfrac12,\dfrac14)$ 022025 $x=k\pi,k\in \mathbb{Z}$ 041043 $\dfrac{\sqrt{2}}{2}$ 022027 (1)$y'=\dfrac12x^{-\dfrac12}-\dfrac{1}{x}$\\(2)$3x^2-2x+1$\\(3)$\mathrm{e}^x(2x+x^2)$\\(4)$\dfrac12x^{-\dfrac12}\sin{x}+\sqrt{x}\cos{x}$\\(5)$\ln{x}+1$ 022028 (1)$y'=\dfrac{\cos x}{x}-\dfrac{\sin x}{x^2}$\\(2)$y'=\dfrac{2x}{\ln x}-\dfrac{x}{\ln^2{x}}$\\(3)$y'=\dfrac{1}{x\ln {10}}$ 041047 $1-\dfrac{\sqrt{2}}{2}$ 041048 $-\dfrac13,\dfrac{13}{6}$ 041049 $\dfrac59,\dfrac{5}{36}$ 004609 (1)$\dfrac{25}{32}$\\ (2)分布列为$\begin{pmatrix}900 & 1500\\ -3p^3+6p^2-3p+1 & 3p^3-6p^2+3p\end{pmatrix}$, $E[X]$的最大值为$350$万元, 此时$p=\dfrac13$ 004610 (1)$\dfrac{135}{512}$\\(2)分布列为$\begin{pmatrix}0 & 1 & 2 & \dots & n-1 & n\\ \dfrac14 & \dfrac34 \cdot \dfrac14 & (\dfrac34)^2 \cdot \dfrac14 & \dots & (\dfrac34)^{n-1} \cdot \dfrac14 & (\dfrac34)^n\end{pmatrix}$,$E[X]=3-3(\dfrac34)^n$ 019240 D 019245 (1)$0.1\%$ (2)$95.5\%$ 041153 $\textcircled{3},\textcircled{4}$ 041206 (1)$\frac{e}{2}$;(2) 任意 $a>0$, $b>0$ 能使函数 $f(x)$ 与 $g(x)$ 在区间 $(0,+\infty)$ 内存在``$\mathrm{S}$ 点'' 021270 $(0,-8)$;$y=8$ 021271 $(0,\frac{1}{16})$;$y=-\frac{1}{16}$ 021272 $(0,-\frac{1}{6})$;$y=\frac{1}{6}$ 041007 (1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$;\\ (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$; (4) $y^2=16x$或$y^2=-16x$; (5) $y^2=16x$或$x^2=-12y$. 021276 $\frac{5}{2}$ 021279 $(3,\pm 2\sqrt{3})$ 021284 $(3,\pm 2\sqrt{6})$ 021269 A 021275 $(\frac{m}{4},0)$;$x=-\frac{m}{4}$ 041008 $(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$ 041009 $y^2=12x$ 041010 2 041011 $y^2=-8x$;$m=\pm 2\sqrt{6}$ 008929 $x^2=-y,x\in [-1,1]$ 041012 (1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$ 021278 $(1,\pm 2)$ 041013 最小值为4, $M(\frac{1}{4},1)$ 041014 $x^2=-12y$ 021280 $y^2=x$ 041015 $y^2=8x$ 021304 $\frac{\pi}{2}$ 021308 $\frac{11}{2}$ 021287 $\frac{45}{8}$ 009840 $(\frac{1}{4},0)$;$x=-\frac{1}{4}$ 021309 2 021290 $(\frac{1}{2},1)$ 021291 $y^2=2x$或$y^2=6x$ 041016 相切 021339 $x^2-x+y^2=0(x\neq 0)$ 021289 $4\sqrt{3}$ 021293 3 021294 $(4,2)$ 021295 $-4$ 021305 $y^2=\pm 4x$ 013106 $[-1,1]$ 021292 B 008930 $0$或$-\frac{1}{2}$ 008934 $4x-y-15=0$ 008922 $y=\frac{1}{4},x>\frac{1}{16}$ 021299 2 021300 $2\sqrt{15}$ 021321 (1) 定点$(2,0)$;(2) 4 041017 (1) 6; (2) $\frac{1}{32}$ 041018 8 021316 $\frac{11}{4}$ 021326 8 021319 $y=\pm \frac{\sqrt{3}}{3}x+1$ 041019 $\frac{2}{p}$ 041020 D 041021 (1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$ 021331 D 041022 C 041023 必要不充分 021334 $y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$ 021335 $y=-2x^2+8x-4$ 021336 $y^2=8x-16$ 021337 $x^2+y^2=1$ 021338 $3x+y-4=0(x \neq 1)$ 021340 $(x-1)^2+(y-2)^2=\frac{1}{9}$ 021341 $x+2y-5=0$ 021342 $x^2+y^2=4(x>0,y>0)$ 021343 $(x-3)^2=10y-15$ 041024 C 008846 0或$-\frac{1}{2}$ 008847 $\frac{3}{2}$ 008852 0或$\frac{1}{4}$或$-\frac{1}{2}$ 008853 $[-4,4]$ 041025 (2) $13x-2y=0$ 041026 $(-3,5),(1,1)$ 041027 $k<-2$或$k>2$或$k=\pm \sqrt{3}$ 010704 $(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$ 010703 当$01$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线 021348 $x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$ 021349 0 021351 $\frac{\pi}{3}$或$\frac{2\pi}{3}$ 041028 $(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$ 021352 4 021353 D 041029 $x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) 021354 (1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$ 021355 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线 009845 $x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) 009846 $x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$ 021358 6 021359 $\sqrt{17}$ 021362 $(3\sqrt{2},\sqrt{2})$ 021363 最大值$7$;最小值$\frac{3\sqrt{15}-4}{4}$ 021364 $\sqrt{33}+2\sqrt{6}$ 012470 B 041030 B 041031 A 041032 $(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$ 041033 13 041034 $\frac{1+2\sqrt{21}}{3}$ 041035 $y=\pm 1$ 041036 $y^2=2x-2$ 041037 $7\sqrt{3}$ 041038 (1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆 $\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$ 041039 (1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$; (2) 点 $T$ 不在曲线 $\Gamma$ 上 022029 $\frac{2}{3}$ 022030 (1)$y^{'}=20(5x-3)^{3}$;(2)$y^{'}=15(3x+2)^{4}$ 022031 (1)$y^{'}=12(1-3x)^{-5}$;(2)$y^{'}=-\frac{3}{4}(3x+1)^{-\frac{5}{4}}$ 022032 (1)$y^{'}=3\cos (3 x-\dfrac{\pi}{6})$;(2)$y^{'}=-2\sin{2x}$ 022033 (1)$y=-x+\frac{\pi}{3}+\frac{\sqrt{3}}{2}$;(2)$y=(-6ln2)x+2$ 022034 (1)$y^{'}=\mathrm{e}^{2x}(2\sin{3x}+3\cos{3x})$;(2)$y^{'}=\frac{1}{1-x^2}$;(3)$y^{'}=\frac{-2x^2+2x}{(2x+1)^4}$ 022035 (1)在$\mathbf{R}$上严格递增;(2)在$(-\infty,0),(0,+\infty)$严格递增 022036 (1)在$(-\infty,1],[1,+\infty)$上严格递增, 在$[-1,0),(0,1]$上严格递减;(2)在$(-\infty,1]$上严减,在$[1,+\infty)$上严增;(3)在$(0,\frac{1}{e}]$上严减, 在$[\frac{1}{e},+\infty)$上严增 022037 在$(-\infty,1],[4,+\infty)$上严格递增,在$[2,4]$上严减 022038 (1)$(-\infty,0]$;(2)$[3,+\infty)$;(3)$a=3$;(4)$(0,3)$ 022039 (1)在$(0,+\infty)$上严格减; (2)在$(0,\frac{\pi}{4})$上严格减 022040 略 022041 $1$ 022042 在$(-\pi,\frac{\pi}{6}],[\frac{5\pi}{6},\pi)$上严增,在$[\frac{\pi}{6},\frac{5\pi}{6}]$上严格减,极大值为$f(\frac{\pi}{6})=\frac{\pi}{12}+\frac{\sqrt{3}}{2}$,极小值为$f(\frac{5\pi}{6})=\frac{5\pi}{12}-\frac{\sqrt{3}}{2}$ 022043 $a=-3,b=-24$ 015852 $(-\infty,-3)\cup(6,+\infty)$ 022044 $\frac{1}{\mathrm{e}}$ 022045 $(-\infty,-3]$ 041044 $1-e$ 022046 $f_{\max}(x)=f(-1)=10$, $f_{\min}(x)=f(-4)=-71$ 022047 $f_{\max}(x)=f(\dfrac{\pi}{6})=\dfrac{\pi}{6}+\sqrt{3}$ 041045 $e^{2}$ 041046 (1)$h(t)=-t^3+t-1$;(2)$(1,+\infty)$ 031805 (1)$S_{ABCD}=800\cos{\theta}(1+4\sin{\theta})$, $S_{\triangle CDP}=1600\cos{\theta}(1-\sin{\theta}),\sin{\theta}\in[\frac{1}{4},1)$;(2)当$\theta$为$\frac{\pi}{6}$时, 能使年总产值最大,最大值为$6000\sqrt{3}$