ans 021441 错误, 正确, 错误, 错误 021442 D 021443 C 021444 A 021445 C 021446 D 021447 $-390^\circ$ 021448 $304^\circ$, $-56^\circ$ 021449 $-144^\circ$ 021450 二, 四 021451 (1) $\{\alpha|\alpha=60^\circ+k\cdot 360^\circ, \ k\in \mathbf{Z}\}$, $-300^\circ$, $60^\circ$, $420^\circ$; (2) $\{\alpha|\alpha = -21^\circ+k\cdot 360^\circ, \ k \in \mathbf{Z}\}$, $-21^\circ$, $339^\circ$, $699^\circ$ 021452 \begin{tikzpicture}[>=latex] \fill [pattern = north east lines] (30:2) arc (30:60:2) -- (0,0) -- cycle; \draw (30:2) -- (0,0) -- (60:2); \draw [->] (-2,0) -- (2,0) node [below] {$x$}; \draw [->] (0,-2) -- (0,2) node [left] {$y$}; \draw (0,0) node [below left] {$O$}; \end{tikzpicture} 021453 $-1290^{\circ}$;第二象限 021454 (1) $ \{\alpha|\alpha=45^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ (2) $\{\alpha|\alpha=135^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\ (3) $\{\alpha|\alpha=45^{\circ}+k\cdot 90^{\circ}, \ k \in \mathbf{Z}\}$;\\ (4) $\{\alpha|180^{\circ}+k\cdot 360^{\circ}<\alpha<270^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$. 021455 (1) $ \{\beta|\beta=\alpha+180^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ (2) $\{\beta|\beta=\alpha+90^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\ (3) $\{\beta|\beta=-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\ (4) $\{\beta|\beta=90^{\circ}-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$. 021456 C 021457 B 021458 $\dfrac{\pi}{12}$; $\dfrac{7\pi}{12}$; $\dfrac{5\pi}{4}$; $300^{\circ}$; $324^{\circ}$; $315^{\circ}$; $(\dfrac{270}{\pi})^{\circ}$ 021459 (1)$\frac{50\pi+180}{9}$;(2)$\frac{250\pi}{9}$ 021460 $\sqrt{3}$ 021461 (1)$\frac{\pi}{3}$;(2)$\frac{2\pi}{3}$ 021462 (1)$16\pi+\frac{2\pi}{3}$,二;\\ (2)$-18\pi+\frac{4\pi}{3}$,三;\\ (3)$-2\pi+\frac{7\pi}{5}$,三;\\ (4)$-2\pi+\frac{3\pi}{4}$,二. 021463 $\frac{1}{2}$ 021464 (1) $\{\alpha|-\frac{\pi}{2}+2k\pi<\alpha<2k\pi,\ k \in \mathbf{Z}\}$;\\ (2) $\{\alpha|\alpha=\frac{k\pi}{2},\ k \in \mathbf{Z}\}$. 021465 (1) $\beta=\alpha+2k\pi,\ k \in \mathbf{Z}$;\\ (2) $\beta=-\alpha+2k\pi,\ k \in \mathbf{Z}$;\\ (3) $\beta=-\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$;\\ (4) $\beta=\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$. 021466 (1) $\{\alpha|-\frac{\pi}{4}+2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\ (2) $\{\alpha|\frac{\pi}{6}+k\pi \le \alpha \le \frac{5\pi}{6}+k\pi,\ k \in \mathbf{Z}\}$. 021467 (1) 第四象限;第四象限;\\ (2) 第二象限或者第四象限;第一象限或第二象限或者$y$轴正半轴. 021468 $A\cap B=\{\alpha | 2k \pi+\dfrac{5\pi}{6}<\alpha<2k \pi+\dfrac{7\pi}{6},\ k \in \mathbf{Z} \}$ 021469 \begin{tabular}{|c|c|c|c|c|c|} \hline &$P(-5,12)$&$P(0,-6)$&$P(6,0)$&$P(-9,-12)$&$P(1,-\sqrt{3})$\\ \hline$\sin \alpha$&$\dfrac{12}{13}$ &$-1$ & $0$&$-\dfrac{4}{5}$ &$-\dfrac{\sqrt{3}}2$ \\ \hline$\cos \alpha$&$-\dfrac{5}{13}$ &$0$ & $1$&$-\dfrac{3}{5}$ &$\dfrac 12$ \\ \hline$\tan \alpha$&$-\dfrac{12}{5}$ &不存在 & $0$&$\dfrac{4}{3}$ &$-\sqrt{3}$ \\ \hline$\cot \alpha$&$-\dfrac{5}{12}$ &$0$ & 不存在 &$\dfrac {3}{4}$ &$-\dfrac{\sqrt{3}}3$ \\ \hline \end{tabular} 021470 $2\sqrt{5}$ 021471 $\frac{2\sqrt{13}}{13}$;$-\frac{2}{3}$ 021472 $ \left( -2,\frac{2}{3} \right)$ 021473 $<$ 021474 5 021475 2 021476 当$t=\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha =- \frac{\sqrt{15}}{3}$;\\ 当$t=-\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha = \frac{\sqrt{15}}{3}$;\\ 当$t=0$时, $\cos \alpha=-1$, $\tan \alpha = 0$. 021477 当$\alpha$在第二象限时,$ \sin \alpha =\frac{4}{5}$, $\tan \alpha=-\frac{4}{3}$;\\ 当$\alpha$在第三象限时,$ \sin \alpha =-\frac{4}{5}$, $\tan \alpha=\frac{4}{3}$. 021478 $-\frac{\sqrt{3}}{4}$ 021479 (1) 第四象限; (2) 第一、四象限;(3)第一、三象限;(4)第一、三象限. 021480 $A=\left\{ -2,-0,4 \right\}$ 021481 (1) $\{\alpha|2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\ (2) $[0,3)$ 021482 \begin{center} \begin{tabular}{|c|c|c|c|c|c|} \hline$\alpha$&$\dfrac{\pi}{3}$&$\dfrac{7 \pi}{4}$&$\dfrac{2021 \pi}{2}$&$-\dfrac{\pi}{6}$&$-\dfrac{22 \pi}{3}$\\ \hline$\sin \alpha$& $\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{2}}{2}$ & $1$&$-\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ \\ \hline$\cos \alpha$&$\frac{1}{2}$ &$\frac{\sqrt{2}}{2}$ & $0$&$\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ \\ \hline$\tan \alpha$&$\sqrt{3}$ &$-1$ & 不存在 &$-\frac{\sqrt{3}}{3}$ &$-\sqrt{3}$\\ \hline$\cot \alpha$&$\frac{\sqrt{3}}{3}$ &$-1$ & $ 0$&$-\sqrt{3}$ &$-\frac{\sqrt{3}}{3}$ \\ \hline \end{tabular} \end{center} 021483 (1) $\{x|x=\frac{4\pi}{3}+2k \pi$或$ x=\frac{5\pi}{3}+2k \pi,\ k \in \mathbf{Z} \}$;\\ (2) $\{-\frac{2\pi}{3},-\frac{\pi}{3},\frac{4\pi}{3} ,\frac{5\pi}{3},\frac{10\pi}{3},\frac{11\pi}{3} \}$ 021484 $-\frac{2\sqrt{5}}{5}$;$2$ 021485 \textcircled{2} \textcircled{4} 021486 当$\alpha$在第一象限时,$ \sin \alpha =\frac{3\sqrt{10}}{10}$, $\cos \alpha =\frac{\sqrt{10}}{10}$,$\tan \alpha=3$;\\ 当$\alpha$在第三象限时,$ \sin \alpha =-\frac{3\sqrt{10}}{10}$,$\cos \alpha =-\frac{\sqrt{10}}{10}$, $\tan \alpha=3$. 021487 $\sin k\pi =0$; $\cos k\pi=\begin{cases}1, & k=2n, \\ -1, & k=2n-1\end{cases}$($n \in \mathbf{Z}$). 021488 (1) $\{\theta | 2k \pi+\dfrac{\pi}{3}<\theta<2k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$;\\ (2) $\{\theta | k \pi-\dfrac{\pi}{2}<\theta \le k \pi-\dfrac{\pi}{6},\ k \in \mathbf{Z} \}$;\\ (3) $\{\theta | k \pi+\dfrac{\pi}{3} \le \theta \le k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$. 021489 第二象限 021490 (1) 当$\dfrac{\alpha}{2}$在第二象限时,点$P$在第四象限;\\ 当$\dfrac{\alpha}{2}$在第四象限时,点$P$在第二象限.\\ (2) $\sin (\cos \alpha) \cdot \cos (\sin \alpha)<0$ 021491 当$m=0$时,$ \cos (\alpha+1905^{\circ})=-1$,$\tan (\alpha-615^{\circ})=0$;\\ 当$m=\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=-\frac{\sqrt{15}}{3}$;\\ 当$m=-\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=\frac{\sqrt{15}}{3}$. 021492 $-\dfrac{3}{8}$ 021493 $-\dfrac{1}{20}$ 021494 $\dfrac{7\sqrt{2}}{4}$ 021495 $\dfrac{3\sqrt{5}}{5}$ 021496 $11$ 021497 $5$;$-\dfrac{12}{5}$;$\dfrac{4}{9}$ 021498 $\sin ^2 \alpha$ 021499 $1$ 021502 $-\dfrac{12}{5}$ 021503 $-\dfrac{\sqrt{3}}{2}$ 021504 $\dfrac{\sqrt{7}}{2}$;$\dfrac{\sqrt{7}}{4}$ 021505 $-\dfrac{\sqrt{11}}{3}$ 021506 $\dfrac{\pi}{3}$ 021507 $\left[ 0,\pi \right )$ 021508 $-\dfrac{\sqrt{3}}{2}$;$-\dfrac{\sqrt{2}}{2}$;$-\sqrt{3}$;$-\sqrt{3}$ 021509 $69^{\circ}$;$72^{\circ}$;$\dfrac{\pi}{9}$;$\dfrac{7 \pi}{15}$ 021510 $\cot \alpha$ 021511 $-1$ 021512 $-1$ 021513 $ \sin 2-\cos 2$ 021514 $0$ 021515 $0$ 021516 $-\dfrac{\sqrt{1-a^2}}{a}$ 021517 $-\dfrac{2+\sqrt{3}}{3}$ 021518 (1) $\dfrac{\sqrt{3}}{2}$;(2) $\dfrac{1}{4}$. 021519 (1) $-\dfrac{2}{3}$; \\ (2) $\dfrac{2}{3}$; \\ (3) $-\dfrac{\sqrt{5}}{3}$;\\ (4) $\dfrac{\sqrt{5}}{2}$. 021520 (1) $\sin 69^{\circ}$ ; (2) $-\cos 8^{\circ}$ ; (3) $-\tan \dfrac{\pi}{9}$; (4) $\cot \dfrac{7\pi}{15}$. 021521 $\dfrac{2}{5}$ 021522 $(3,4)$ 021523 $0$ 021524 $\sin \alpha$ 021525 $-\dfrac{1}{5}$ 021526 (1) $\dfrac{\sqrt{6}}{6}-\sqrt{3}$;\\ (2) $-\dfrac{\sqrt{6}}{3}$;\\ (3) $1$ 021527 (1) $\dfrac{6 \pi}{5}$; (2) $\dfrac{4 \pi}{5}$; (3) $\dfrac{13 \pi}{10}$; (4) $\dfrac{17 \pi}{10}$. 021528 (1) 当$\alpha$在第一象限时, $\sin (2 \pi-\alpha)=-\dfrac{\sqrt{3}}{2}$; 当$\alpha$在第三象限时, $\sin (2 \pi-\alpha)=\dfrac{\sqrt{3}}{2}$.\\ (2) 当$\alpha$在第一象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=-\sqrt{3}$; 当$\alpha$在第四象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=\sqrt{3}$. 021529 (1) $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\ (2) $\{x | x=2k \pi \pm \dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\ (3) $\{x | x=k \pi + \dfrac{5\pi}{6},\ k \in \mathbf{Z}\}$;\\ (4) $\{x | x=2k \pi + \dfrac{5\pi}{6}$ 或$x=2k \pi + \dfrac{3\pi}{2} ,\ k \in \mathbf{Z}\}$;\\ 第二种写法: $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{6}+\dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\ (5) $\{x | x=k \pi - \arctan \dfrac{\sqrt{3}}{2}+ \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\ (6) $\{x | x=\dfrac{2k \pi}{5} + \dfrac{7\pi}{60}$ 或$ x=\dfrac{2k \pi}{5} - \dfrac{13\pi}{60} ,\ k \in \mathbf{Z}\}$;\\ (7) $\{x | x=k \pi - \dfrac{5\pi}{8}$ 或$x=k \pi - \dfrac{3\pi}{8} ,\ k \in \mathbf{Z}\}$; 021530 (1) $\{ \dfrac{\pi}{12},\dfrac{17\pi}{12} \}$;\\ (2) $\{ \dfrac{5\pi}{6} \}$;\\ (3) $\{ \dfrac{\pi}{12},\dfrac{5\pi}{12} \}$;\\ (4) $\{ \dfrac{5\pi}{6} \}$. 021531 (1) $\{x | x= \dfrac{2k \pi}{5} ,\ k \in \mathbf{Z}\}$;\\ (2) $\{x | x= \dfrac{2k \pi}{3} +\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\ (3) $\{x | x= 2k \pi$ 或$x=k \pi +(-1)^k \cdot \dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\ (4) $\{x | x= k \pi+\dfrac{ \pi}{3}$ 或$x=k \pi -\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$. 021532 $\dfrac{3+4\sqrt{3}}{10}$ 021533 $-1$ 021534 $-\dfrac{33}{50}$ 021535 (1) $\dfrac{\sqrt{6}-\sqrt{2}}{4}$; (2) $\dfrac{\sqrt{6}+\sqrt{2}}{4}$; (3) $0$. 021536 (1) $\sqrt{3} \sin \alpha$; (2) $\cos(\alpha-2\beta)$. 021537 $\dfrac{140}{221}$ 021538 $\dfrac{2\sqrt{6}-1}{6}$ 021539 证明略 021540 C 021541 A 021542 $\dfrac{3\sqrt{10}+6\sqrt{2}+2\sqrt{14}-\sqrt{70}}{24}$ 021543 $\dfrac{8\sqrt{3}-21}{20}$ 021544 $\dfrac{\pi}{2}$ 021545 $-\dfrac{2+\sqrt{15}}{6}$ 021546 $-\dfrac{\sqrt{2}}{2}$ 021547 $\sin 2\beta$ 021548 $0$ 021549 $2-\sqrt{3}$ 021550 $\dfrac{16}{65}$ 021551 $-\dfrac{7}{25}$ 021552 $-\dfrac{4\sqrt{14}+3\sqrt{2}}{20}$ 021553 $(\dfrac{4\sqrt{3}+3}{2},\dfrac{3\sqrt{3}-4}{2})$ 021554 $-\dfrac{33}{65}$或$\dfrac{63}{65}$ 021555 B 021556 C 021557 $-\dfrac{56}{65}$ 021558 $-3$ 021559 $\dfrac{3}{4}$ 021560 $\dfrac{-6+5\sqrt{3}}{3}$ 021561 $\tan \alpha$ 021562 $\sqrt{3}$ 021563 $-\dfrac{\sqrt{3}}{3}$ 021564 A 021565 $-\dfrac{17}{31}$ 021566 $\dfrac{\pi}{4}$ 021567 (1) $\dfrac{1}{3}$; (2) $\dfrac{1}{7}$ 021568 $-\dfrac{1}{5}$ 021569 当$CD = 1.4$米时,$\tan \angle ACB$最大 021570 (1) $2 \sin (\alpha+\dfrac{\pi}{6})$; (2) $\sqrt{2} \sin (\alpha+\dfrac{7\pi}{4})$. 021571 $6\cos(\alpha+\dfrac{\pi}{3})$ 021572 $2k \pi-\dfrac{\pi}{3}(k\in \mathbf{Z} )$ 021573 B 021574 $\dfrac{1}{3}$ 021575 $\dfrac{\pi}{12}$或$\dfrac{5\pi}{12}$ 021576 $5$ 021577 $\dfrac{13}{3}$ 021578 $-\dfrac{p}{1+q}$ 021579 $\dfrac{3}{5}$ 021580 $\dfrac{24}{7}$ 021581 $-\dfrac{24}{25}$ 021582 $-\dfrac{15}{17}$ 021583 $\sin 2 \varphi=\dfrac{4\sqrt{2}}{9}$; $\cos 2 \varphi=-\dfrac{7}{9}$; $\tan 2 \varphi=-\dfrac{4\sqrt{2}}{7}$. 021584 $\dfrac{24}{25}$; $\dfrac{7}{25}$; $\dfrac{24}{7}$ 021585 (1) $-\dfrac{\sqrt{3}}{3}$;\\ (2) $\dfrac{3}{4}$. 021586 $\dfrac{7}{24}$ 021587 $-\dfrac{2\sqrt{10}}{5}$ 021588 $1$ 021590 $1$或$\dfrac{7}{25}$ 021591 $-\dfrac{\sqrt{2-2a}}{2}$ 021592 第三象限 021593 当$\dfrac{\theta}{2}$在第二象限时, $\sin \dfrac{\theta}{2}=\dfrac{\sqrt{3}}{3}$, $\cos \dfrac{\theta}{2}=-\dfrac{\sqrt{6}}{3}$, $\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$;\\ 当$\dfrac{\theta}{2}$在第四象限时, $\sin \dfrac{\theta}{2}=-\dfrac{\sqrt{3}}{3}$, $\cos \dfrac{\theta}{2}=\dfrac{\sqrt{6}}{3}$, $\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$. 021594 $\dfrac{3}{5}$;$\dfrac{4}{5}$ 021596 $\dfrac{2}{3}$ 021597 $\cos \alpha-\sin \alpha$ 021598 $\sin \dfrac{ \alpha}{2}$ 021599 (1) $\tan \dfrac{\theta}{2}$; (2) $\sin \alpha$. 021600 $\dfrac{\sqrt{6}}{2}$ 021601 $30^{\circ}$或$90^{\circ}$ 021602 $\sqrt{6}$ 021603 $55$ 021604 $\dfrac{\pi}{3}$或$\dfrac{2\pi}{3}$ 021605 $1: \sqrt{3}: 2$ 021606 $2$ 021607 $\dfrac{5}{8}$ 021608 等腰 021609 $\dfrac{3\sqrt{2}}{2}$ 021610 $\sqrt{3}$ 021611 $\dfrac{7\pi}{12}$ 021612 $\dfrac{2\pi}{3}$ 021613 (1) $\left( 0,9 \right)$; \\ (2) $\{9\} \cup \left[18,+ \infty \right)$;\\ (3) $\left( 9,18 \right)$. 021614 $\dfrac{3\sqrt{7}}{8}$ 021615 $\sqrt{17}$或$\sqrt{65}$ 021616 $\dfrac{\pi}{4}$ 021617 \textcircled{1};\textcircled{2} 021618 $a>3$ 021619 $a=\sqrt{21}$和$\sin B=\dfrac{5\sqrt{7}}{14}$ 021620 $\dfrac{2\pi}{3}$ 021621 $c=\sqrt{6}+\sqrt{2}$;$C=75^\circ$. 021622 $\dfrac{\sqrt{19}}{2}$ 021623 周长的最小值为$12$,此时三角形为正三角形;\\ 面积最大值为$4\sqrt{3}$,此时三角形为正三角形. 021624 $\dfrac{\sqrt{5}}{5}$ 021625 $\dfrac{2\sqrt{5}}{5}$或$-\dfrac{2\sqrt{5}}{25}$ 021626 $\dfrac{\sqrt{5}}{5}$或$\dfrac{11\sqrt{5}}{25}$ 021627 $\left ( 2,2\sqrt{2} \right )$ 021628 (1) 以$C$为直角的直角三角形;\\ (2) 以$A$为顶角的等腰三角形;\\ (3) 以$A$为直角的直角三角形. 021629 $a=\sqrt{13}$;$R=\dfrac{\sqrt{39}}{3}$. 021630 $6\sqrt{19}$ 021631 (1) $x=\arcsin \dfrac{2}{5}$或$\pi-\arcsin \dfrac{2}{5}$;\\ (2) $x=\pi-\arccos \dfrac{2}{3}$或$\pi+\arccos \dfrac{2}{3}$;\\ (3) $x=k\pi- \arctan \dfrac{1}{2},k \in \mathbf{Z}$. 021632 $300\sqrt{3}$ 021633 证明略 021634 $\theta=\dfrac{\pi}{12}$;塔高为$1.5$千米. 021635 $64.81$米 021636 (1) $3.9$千米;(2) $4.0$千米. 021637 $2.4$千米 021638 $\dfrac{\pi}{2}$ 021639 B 021640 (1) \begin{tikzpicture}[>=latex, scale = 0.7] \draw [->] (-4,0) -- (4,0) node [below] {$x$}; \draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (-pi,0.1) -- (-pi,0) node [below left] {$-\pi$}; \draw (-0.5*pi,0.1) -- (-0.5*pi,0) node [below] {$-\frac{\pi}{2}$}; \draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$}; \draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; \draw (0.1,1) -- (0,1) node [left] {$1$}; \draw (0.1,-1) -- (0,-1) node [left] {$-1$}; \draw [domain = -pi:pi,samples = 100] plot (\x,{sin(\x/pi*180)+1}); \end{tikzpicture}\\ (2) \begin{tikzpicture}[>=latex, scale = 0.7] \draw [->] (0,0) -- (7,0) node [below] {$x$}; \draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (pi/2,0.1) -- (pi/2,0) node [below] {$\frac{\pi}{2}$}; \draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; \draw (1.5*pi,0.1) -- (1.5*pi,0) node [below] {$\frac{3\pi}{2}$}; \draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$}; \draw (0.1,1) -- (0,1) node [left] {$1$}; \draw (0.1,-1) -- (0,-1) node [left] {$-1$}; \draw [domain = 0:2*pi,samples = 100] plot (\x,{-cos(\x/pi*180)}); \end{tikzpicture} 021641 (1) 定义域为$\left \{x|x \neq-\dfrac{\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$;\\ (2) 定义域为$\left \{x|\dfrac{\pi}{2}+2k\pi \leq x \leq \dfrac{3\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$. 021642 $\left \{x|\dfrac{\pi}{6} \leq x \leq \dfrac{5\pi}{6},k \in \mathbf{Z} \right \}$ 021643 $2\pi$ 021644 C 021645 C 021646 (1) 当$a \in (-\infty,-\dfrac{\sqrt{2}}{2})\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\ 当$a \in [-\dfrac{\sqrt{2}}{2},0)\cup \{1\}$ 时,方程实数解个数为$1$个;\\ 当$a \in [0,1)$时,方程实数解个数为$2$个.\\ (2) 当$a \in (-\infty,-1)\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\ 当$a \in (0,1]$时,方程实数解个数为$1$个;\\ 当$a \in \{0,-1\}$时,方程实数解个数为$2$个;\\ 当$a \in (-1,0)$时,方程实数解个数为$3$个. 021647 (1) $8\pi$; (2) $\pi$;(3) $\pi$;(4) $2\pi$. 021648 $3$ 021649 A 021650 C 021651 (1) 假;(1) 假;(3) 真. 021652 D 021653 (1) $\pi$; (2) $\pi$; (3) $\dfrac{\pi}{2}$; (4) $\dfrac{\pi}{|a|}$. 021654 $4\sin(\dfrac{\pi x}{2})-2$ 021655 B 021656 A 021657 (1) $f(3)=-1$; $f(5)=1$; $f(7)=-1$;\\ (2) $T=4$. 021658 $\left [2,4\right] $ 021659 $\left [-2,2\right] $ 021660 $ [-\dfrac{3}{2},3] $ 021661 $ (-\dfrac{\sqrt{3}}{2},1] $ 021662 $3$; $\left \{x|x=-\dfrac{\pi}{2}+2k\pi,k \in \bf{Z} \right\}$ 021663 $-3$; $\left \{x|x=-\dfrac{\pi}{12}+k\pi,k \in \bf{Z} \right\}$ 021664 当$x=\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \bf{Z}$时,函数的最大值为$\sqrt{13}$;\\ 当$x=-\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \bf{Z}$时,函数的最小值为$-\sqrt{13}$. 021665 D 021666 C 021667 当$\alpha=\dfrac{\pi}{2}-\theta$时,竹竿的影子最长,最长为$\dfrac{\sin(\alpha+\theta)}{\sin \theta}*l$. 021668 $[-1,1]$ 021669 $\{x|x\neq 2k\pi,k \in \bf{Z}\}$;$(-\infty,0]$ 021670 $k=3$或$-3$;$b=-1$ 021671 当$x=0$时,函数$y$取到最大值,最大值为$0$;\\ 当$x=\dfrac{\pi}{4}$时,函数$y$取到最小值,最小值为$-1$. 021672 $f(a)=\begin{cases} a^2+2a+2, & a\leq -1,\\ 1, & -1=latex, scale = 0.7] \draw [->] (-4,0) -- (4,0) node [below] {$x$}; \draw [->] (0,-1.5) -- (0,2) node [left] {$y$}; \draw (0,0) node [below left] {$O$}; \draw ({-pi/12},0.1) -- ({-pi/12},0) node [below left] {$-\frac{\pi}{12}$}; \draw ({pi/6},0.1) -- ({pi/6},0) node [below] {$\frac{\pi}{6}$}; \draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$}; \draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above] {$\frac{2\pi}{3}$}; \draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$}; \draw (0.1,1) -- (0,1) node [left] {$1$}; \draw (0.1,-1) -- (0,-1) node [left] {$-1$}; \draw [domain = {-pi/12}:{11*pi/12},samples = 100] plot (\x,{sin(2*\x/pi*180+30)}); \end{tikzpicture}\\ (2) \begin{tikzpicture}[>=latex, scale = 0.7] \draw [->] (-1,0) -- (15,0) node [below] {$x$}; \draw [->] (0,-3) -- (0,3) node [left] {$y$}; \draw (0,0) node [below left] {$O$}; \draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$}; \draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; \draw (3*pi,0.1) -- (3*pi,0) node [below] {$\frac{3\pi}{2}$}; \draw (4*pi,0.1) -- (4*pi,0) node [below] {$4\pi$}; \draw (0.1,2) -- (0,2) node [left] {$2$}; \draw (0.1,-2) -- (0,-2) node [left] {$-2$}; \draw [domain =0:4*pi,samples = 100] plot (\x,{2*sin(0.5*\x/pi*180)}); \end{tikzpicture}\\ (3) \begin{tikzpicture}[>=latex, scale = 0.7] \draw [->] (-1,0) -- (4,0) node [below] {$x$}; \draw [->] (0,-1) -- (0,1) node [left] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (0.25*pi,0.1) -- (0.25*pi,0) node [below] {$\frac{\pi}{4}$}; \draw (pi,0.1) -- (pi,0) node [below] {$\pi$}; \draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$}; \draw (0.75*pi,0.1) -- (0.75*pi,0) node [above] {$\frac{3\pi}{4}$}; \draw (0.1,0.5) -- (0,0.5) node [left] {$\frac{1}{2}$}; \draw (0.1,-0.5) -- (0,-0.5) node [left] {$-\frac{1}{2}$}; \draw [domain =0:pi,samples = 100] plot (\x,{0.5*sin(2*\x/pi*180)}); \end{tikzpicture}\\ (4) \begin{tikzpicture}[>=latex, scale = 0.7] \draw [->] (-1.5,0) -- (3.5,0) node [below] {$x$}; \draw [->] (0,-5.5) -- (0,5.5) node [left] {$y$}; \draw (0,0) node [below left] {$O$}; \draw ({-pi/3},0.1) -- ({-pi/3},0) node [below left] {$-\frac{\pi}{3}$}; \draw ({-pi/12},0.1) -- ({-pi/12},0) node [above left] {$-\frac{\pi}{12}$}; \draw ({pi/6},0.1) -- ({pi/6},0) node [below right] {$\frac{\pi}{6}$}; \draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$}; \draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above right] {$\frac{2\pi}{3}$}; \draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$}; \draw (0.1,5) -- (0,5) node [left] {$5$}; \draw (0.1,-5) -- (0,-5) node [below left] {$-5$}; \draw [domain = {-4*pi/12}:{2*pi/3},samples = 100] plot (\x,{5*sin(2*\x/pi*180-60)}); \end{tikzpicture} 021695 $4\pi$;$4$. 021696 $f(x)=4\sin(x+\dfrac{\pi}{6})$ 021697 (1) $f(x)=\dfrac{\sqrt{3}}{2}\sin(3x+\pi)+\dfrac{\sqrt{3}}{2};$\\ (2) $[-\dfrac{\pi}{2}+\dfrac{2k\pi}{3},-\dfrac{\pi}{6}+\dfrac{2k\pi}{3}],k \in \bf{Z}$;\\ (3) 函数最大值为$\sqrt{3}$,此时$x$值为${x|x=-\dfrac{\pi}{6}+\dfrac{2k\pi}{3},k \in \bf{Z}}$ 021698 $x=\pi+2k\pi,k \in \bf{Z}$ 021699 纵;伸长; $3$. 021700 缩短; $\dfrac{1}{2}$; 缩短; $\dfrac{1}{3}$. 021701 $f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{3})$ 021702 $f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{6})$ 021703 $f(x)=2\sin(\dfrac{1}{3}x+\dfrac{\pi}{6})$ 021704 $x=\dfrac{\pi}{3}+2k\pi,k \in \bf{Z}$; $(-\dfrac{2\pi}{3}+2k\pi,0),k \in \bf{Z}$. 021705 C 021706 左; $\dfrac{\pi}{8}$. 021707 $f(x)=\sin(2x+\dfrac{\pi}{2})$, $g(x)=\sin x$. 021708 (1) $\sqrt{2}$; (2) $g(x)=2\cos(\dfrac{1}{2}x-\dfrac{\pi}{3}) $, 单调递减区间为$[\dfrac{2\pi}{3}+4k\pi,\dfrac{8\pi}{3}+4k\pi],k \in \bf{Z}$. 021709 (1) $2\pi$; (2) $1$; (3) $\dfrac{\pi}{2}$. 021710 (1) $[0,\dfrac{\pi}{2})$, $(\dfrac{3\pi}{2},2\pi]$; \\ (2) $[0,\dfrac{\pi}{2})$, $(\dfrac{\pi}{2},\pi]$. 021711 (1) 奇函数; (2) 偶函数. 021712 $[-5,+\infty)$ 021713 (1) $<$; (2) $>$; (3) $>$; (4)$<$. 021714 \textcircled{3} 021715 最小值为$-\dfrac{\sqrt{3}}{3}$,此时$x=-\dfrac{\pi}{3}$. 021716 (1) $ \{x|x \neq \dfrac{k\pi}{2},k \in \bf{Z}\} $;\\ (2) 单调增区间为$(-\dfrac{\pi}{2}+\dfrac{k\pi}{2},\dfrac{k\pi}{2}), k \in \bf{Z}$. 021717 $\{x|x\neq \dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{k\pi}{2},k \in \bf{Z} \}$ 021718 $(-\dfrac{\pi}{4}+\dfrac{k\pi}{3},\dfrac{\pi}{12}+\dfrac{k\pi}{3}), k \in \bf{Z}$ 021719 B 021720 定义域为$ \{x|x \neq \dfrac{7\pi}{5}+2k\pi,k \in \bf{Z}\} $;\\ 严格增区间为$(-\dfrac{3\pi}{5}+2k\pi,\dfrac{7\pi}{5}+2k\pi), k \in \bf{Z}$. 021721 函数零点为$x=\dfrac{2k\pi}{5}+2k\pi,k \in \bf{Z}$. 021722 (1) 假命题; (2) 假命题; (3) 假命题; (4) 真命题. 021723 $[-4,2+4\sqrt{3}]$ 021724 最大张角的正切值为$\dfrac{\sqrt{2}}{4}$, 此时学生距离时钟$\sqrt{0.18}$米. 021726 A 021727 C 021728 B 021729 单位圆 021730 B 021731 $\overrightarrow{CD}$ 021732 $\overrightarrow{AC}$ 021733 (1) 假命题; (2) 真命题; (3) 假命题; (4) 假命题. 021734 (1) $\overrightarrow{DB}$; $\overrightarrow{FE}$.\\ (2) $\overrightarrow{ED}$; $\overrightarrow{CF}$; $\overrightarrow{FA}$.\\ (3) $\overrightarrow{EF}$; $\overrightarrow{AD}$; $\overrightarrow{DA}$; $\overrightarrow{DB}$; $\overrightarrow{BD}$; $\overrightarrow{AB}$; $\overrightarrow{BA}$. 021735 $40$ 021736 $40$ 021737 $2$ 021739 $-3\overrightarrow {a}+6 \overrightarrow {b}$ 021740 $7 \overrightarrow {a}-2 \overrightarrow {b}- \overrightarrow {c}$ 021741 (1) 假命题; (2) 真命题; (3) 假命题; (4) 真命题. 021742 (1) $\overrightarrow {AB}=\dfrac{1}{2}\overrightarrow {a}-\dfrac{1}{2}\overrightarrow {b}$;\\ (2) $\overrightarrow {BC}=\dfrac{1}{2}\overrightarrow {a}+\dfrac{1}{2}\overrightarrow {b}$. 021743 $\lambda=\dfrac{1}{3}$ 021744 $x=2$; $y=1$. 021745 (2) $m=1$或$-1$. 021746 $\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{a}$;\\ $\overrightarrow{DC}=-\dfrac{1}{2}\overrightarrow{a}+\overrightarrow{b}$;\\ $\overrightarrow{MN}=-\dfrac{1}{4}\overrightarrow{a}-\overrightarrow{b}$. 021747 $\overrightarrow{0}$ 021748 $\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}$ 021749 A 021750 B 021751 C 021752 $\sqrt{3}$ 021753 $-\dfrac{3\sqrt{3}}{2}$ 021754 等边三角形 021755 $\dfrac{\pi}{4}$ 021756 $\dfrac{2\pi}{3}$ 021757 $-10\sqrt{2}$ 021758 $\dfrac{4}{3}$ 021759 $-\dfrac{2}{3}\overrightarrow {a}$ 021760 B 021761 B 021762 A 021763 $7$ 021764 $2$ 021765 C 021766 外心; 重心; 垂心. 021767 $\dfrac{\pi}{3}$ 021768 $-25$ 021769 $\lambda=\dfrac{7}{12}$ 021770 $AB=8$ 021771 $t=\dfrac{1}{3}$ 021772 (1) $(\overrightarrow {a}-\overrightarrow {b}) \cdot \overrightarrow {c}=\overrightarrow {a} \cdot \overrightarrow {c}- \overrightarrow {b} \cdot \overrightarrow {c}=1*1*(-\dfrac{1}{2})-1*1*(-\dfrac{1}{2})=0;\\$ (2) $k<0$或$k>2$. 021773 $[2,5]$ 021774 $\arccos \dfrac{4}{5}$ 021775 $\overrightarrow{OP}=\dfrac{3}{11}\overrightarrow {a}+\dfrac{2}{11}\overrightarrow {b}$ 021776 (1) $(-1,0)$; (2) $(2,\dfrac{1}{2})$; (3) $(2,0)$或 $(-2,0)$; (4) $(\dfrac{3\sqrt{2}}{2},-\dfrac{3\sqrt{2}}{2})$. 021777 (1) 10; (2) $(-\dfrac{4}{5},\dfrac{3}{5})$. 021778 $x=4$, $y=1$. 021779 $(\dfrac{3}{5},-\dfrac{4}{5})$ 021780 $(4,-8)$ 021781 $(1,2)$ 021782 C 021783 A 021784 B 021786 $\lambda=\mu$ 且$\lambda$和$\mu$非零. 021787 (1) 当$t=\dfrac{3}{2}$时,点$P$在$x$轴上; 当$t=\dfrac{1}{3}$时,点$P$在$y$轴上;当$-\dfrac{2}{3}