ans 021268 \begin{center} \begin{tabular}{|c|c|c|c|c|c|} \hline 标准方程 & 图形 & 顶点 & 对称轴 & 焦点 & 准线 \\ \hline $y^2=2 p x$($p>0$) & \begin{tikzpicture}[>=latex,scale = 0.5] \draw [->] (-2,0) -- (2,0) node [below] {$x$}; \draw [->] (0,-2) -- (0,2) node [right] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (-0.5,-2) -- (-0.5,2); \draw [domain = -2:2] plot ({\x*\x/2},\x); \end{tikzpicture} & $(0,0)$ & $x$轴 & $(\frac{p}{2},0)$ & $x=-\frac{p}{2}$ \\ \hline $y^2=-2 p x$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5] \draw [->] (-2,0) -- (2,0) node [below] {$x$}; \draw [->] (0,-2) -- (0,2) node [right] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (0.5,-2) -- (0.5,2); \draw [domain = -2:2] plot ({-\x*\x/2},\x); \end{tikzpicture} & $(0,0)$ & $x$轴 & $(-\frac{p}{2},0)$ & $x=\frac{p}{2}$ \\ \hline $x^2=2 p y$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5] \draw [->] (-2,0) -- (2,0) node [below] {$x$}; \draw [->] (0,-2) -- (0,2) node [right] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (-2,-0.5) -- (2,-0.5); \draw [domain = -2:2] plot (\x,{\x*\x/2}); \end{tikzpicture}& $(0,0)$ & $y$轴 & $(0,\frac{p}{2})$ & $y=-\frac{p}{2}$ \\ \hline $x^2=-2 p y$($p>0$)&\begin{tikzpicture}[>=latex,scale = 0.5] \draw [->] (-2,0) -- (2,0) node [below] {$x$}; \draw [->] (0,-2) -- (0,2) node [right] {$y$}; \draw (0,0) node [below right] {$O$}; \draw (-2,0.5) -- (2,0.5); \draw [domain = -2:2] plot (\x,-{\x*\x/2}); \end{tikzpicture} & $(0,0)$ & $y$轴 & $(0,-\frac{p}{2})$ & $y=\frac{p}{2}$ \\ \hline \end{tabular} \end{center} 021270 $(0,-8)$; $y=8$ 021271 $(0,\frac{1}{16})$; $y=-\frac{1}{16}$ 021272 $(0,-\frac{1}{6})$; $y=\frac{1}{6}$ 041007 (1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$; (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$; (4) $y^2=16x$或$y^2=-16x$; (5) $y^2=16x$或$x^2=-12y$. 021276 $\frac{5}{2}$ 021279 $(3,\pm 2\sqrt{3})$ 021284 $(3,\pm 2\sqrt{6})$ 021269 A 021275 $(\frac{m}{4},0)$;$x=-\frac{m}{4}$ 041008 $(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$ 041009 $y^2=12x$ 041010 2 041011 $y^2=-8x$;$m=\pm 2\sqrt{6}$ 008929 $x^2=-y,x\in [-1,1]$ 041012 (1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$ 021278 $(1,\pm 2)$ 041013 最小值为$4$, $M(\frac{1}{4},1)$ 041014 $x^2=-12y$ 021280 $y^2=x$ 041015 $y^2=8x$ 021304 $\frac{\pi}{2}$ 021308 $\frac{11}{2}$ 021287 $\frac{45}{8}$ 009840 $(\frac{1}{4},0)$;$x=-\frac{1}{4}$ 021309 2 021290 $(\frac{1}{2},1)$ 021291 $y^2=2x$或$y^2=6x$ 041016 相切 021339 $x^2-x+y^2=0(x\neq 0)$ 021289 $4\sqrt{3}$ 021293 3 021294 $(4,2)$ 021295 $-4$ 021305 $y^2=\pm 4x$ 013106 $[-1,1]$ 021292 B 008930 $0$或$-\frac{1}{2}$ 008934 $4x-y-15=0$ 008922 $y=\frac{1}{4},x>\frac{1}{16}$ 021299 2 021300 $2\sqrt{15}$ 021321 (1) 定点$(2,0)$;(2) 4 041017 (1) 6; (2) $\frac{1}{32}$ 041018 8 021316 $\frac{11}{4}$ 021326 8 021319 $y=\pm \frac{\sqrt{3}}{3}x+1$ 041019 $\frac{2}{p}$ 041020 D 041021 (1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$ 021331 D 041022 C 041023 必要不充分 021334 $y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$ 021335 $y=-2x^2+8x-4$ 021336 $y^2=8x-16$ 021337 $x^2+y^2=1$ 021338 $3x+y-4=0(x \neq 1)$ 021340 $(x-1)^2+(y-2)^2=\frac{1}{9}$ 021341 $x+2y-5=0$ 021342 $x^2+y^2=4(x>0,y>0)$ 021343 $(x-3)^2=10y-15$ 041024 C 008846 0或$-\frac{1}{2}$ 008847 $\frac{3}{2}$ 008852 0或$\frac{1}{4}$或$-\frac{1}{2}$ 008853 $[-4,4]]$ 041025 (2) $13x-2y=0$ 041026 $(-3,5),(1,1)$ 041027 $k<-2$或$k>2$或$k=\pm \sqrt{3}$ 010704 $(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$ 010703 当$01$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线 021348 $x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$ 021349 0 021351 $\frac{\pi}{3}$或$\frac{2\pi}{3}$ 041028 $(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$ 021352 4 021353 D 041029 $x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) 021354 (1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$ 021355 $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线 009845 $x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$) 009846 $x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$ 021358 6 021359 $\sqrt{17}$ 021362 $(3\sqrt{2},\sqrt{2})$ 021363 最大值7; 最小值$\frac{3\sqrt{15}-4}{4}$ 021364 $\sqrt{33}+2\sqrt{6}$ 012470 B 041030 B 041031 A 041032 $(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$ 041033 13 041034 $\frac{1+2\sqrt{21}}{3}$ 041035 $y=\pm 1$ 041036 $y^2=2x-2$ 041037 $7\sqrt{3}$ 041038 (1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆 $\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$ 041039 (1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$; (2) 点 $T$ 不在曲线 $\Gamma$ 上 ans 041073 (-2,$\dfrac{1}{2}$) 041074 $x-8y=0(x<-\dfrac{8}{15}\sqrt{15}$或$x>\dfrac{8}{15}\sqrt{15}$) 041075 $(-\infty,-1)\cup(1,+\infty)$ 041076 $[3+2\sqrt{3},+\infty)$ 041077 $2\sqrt{10}$ 041078 44 002112 $y^2=4x$ 002409 $y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$ 041079 $\pm 2\sqrt{6}$ 041080 (5,0) 041081 $\dfrac{23}{24}$ 041082 176.0 041083 $|PA|_{\min}=\begin{cases} a,01 \end{cases}$ 041084 不存在 041085 (1)$m_A=91.5,m_B=90\\(2)S^2_A\dfrac{4}{3}\sqrt{3},\quad \overrightarrow{FA}\cdot \overrightarrow{FB}_{max}=9,\quad$此时$p=2\sqrt{3}$\\(3)$p=2\sqrt{3}$ 041097 $(-\infty,-2)$ 041098 $\dfrac{1}{2}$ 041099 (2)(3)(4) 018928 7 041100 AD,CD 041101 (3)(4) 041102 $\pm 2$ 041103 $y^2-\dfrac{x^2}{48}=1\quad(y<0)$ 041104 4或2或$\dfrac{3}{2}$ 041105 (2) 023553 (1)$\dfrac{17}{45}$\\(2)一级6箱,二级2箱\\(3)预估287.69克 041106 $[\dfrac{1}{3},1)\cup(1,3]$ 018949 没有被抓的风险 041107 (1)$\dfrac{x^2}{24}+\dfrac{y^2}{20}=1\\S_{max}=\dfrac{5\sqrt{30}}{4}$ 041108 D 041109 C 041110 A 041111 B 041112 $\dfrac{2}{5}\sqrt{10}$ 041113 A 030201 B 041114 A 041115 $(\sqrt{3},2)$ 041116 $\dfrac{\sqrt{2}}{2}$ 041117 (1)$arccos\dfrac{2}{5}\\$(2)正弦值为$\dfrac{\sqrt{15}}{5}\\(3)\dfrac{\pi}{6}$ 041118 $l:y-2=\dfrac{118}{143}(x-3)$ 041119 $x^2+y^2+x-6y+3=0$ 041120 曲线方程为$y^2=48-12x\quad(x\geq3)$及$y^2=4x\quad(x<3)$ 041121 $x^2+y^2=7$ ans 012345 D 023233 $a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2 \end{cases}$. 023255 (1)略;(2)$a_n=\begin{cases} \frac{1}{2},n=1\\-\frac{1}{2n(n-1)},n\geq2 \end{cases}$