ans 004353 $[1,2)$ 004270 $(-3,1]$ 004254 $3$ 004145 $1$ 004083 $3$ 004232 $\dfrac{34}{35}$ 004216 $4$ 004149 $[-\dfrac 12,1]$ 004172 $\dfrac 12$ 004089 $-1$与$\dfrac 12$ 004415 $1$ 004135 D 004136 C 031282 A 004159 (1) $2$; (2) $\arctan\dfrac{\sqrt{2}}4$ 004442 (1) $\dfrac{\pi}{12}$或$\dfrac\pi 4$; (2) $\omega = \dfrac 23$, 单调递增区间为$[0,\dfrac\pi 2]$ 004721 (1) $8\sqrt{3}-8$; (2) 当$A$在弧$\overset\frown{MN}$的四等分点(更靠近$M$)处时, 矩形$ABCD$的面积最大, 最大面积为$16\sqrt{2}-16$ 004246 (1) $[0,\arctan\dfrac 32)\cup (\dfrac{3\pi}4,\pi)$; (2) $\dfrac 83\pi+\sqrt{3}$; (3) 曲线$C$的方程为$x^2=\begin{cases} 24-8y, & y\ge 0, \\ 24+12y, & y\le 0,\end{cases}$ $a$的取值范围为$(6,24)$ 004352 (1) $-5,-3,-1,1,3,5,7$; (2) $a_n=\begin{cases}\dfrac {n+1}2, & n=2k-1,\\ 1-\dfrac n 2, & n = 2k \end{cases}$($k$为正整数); (3) 证明略 031311 $\{4,5\}$ 031312 $(1,11)$ 031313 $-\dfrac 35+\dfrac 45\mathrm{i}$ 031314 $1$ 031315 $2\sqrt{3}$ 031316 $2$ 031317 $(-\dfrac 15,\dfrac 25)$ 031318 $(1,5)$ 031319 $\dfrac 1{4046}$ 031320 $\dfrac 3{392}$ 031321 $(-6,\dfrac{19}{54})$ 031322 $2$ 031323 A 031324 B 031325 B 031326 D 031327 (1) $\arctan 35$; (2) $3\sqrt{2}$ 031328 (1) $33.7$岁; (2) $\chi^2\approx 87.366>3.841$, 所以有骑行绿道与万元级运动自行车购买意愿有关 031329 (1) 约为$65.7\text{cm}^2$; (2) 参考改进建议: \textcircled{1} 雨伞不遮挡视线; \textcircled{2} 伞面为弧形,改进模型将伞设为一段圆弧; \textcircled{3} 考虑伞柄可以伸缩; \textcircled{4} 人体改进为立体模型; \textcircled{5} 考虑风速、风向; \textcircled{6} 考虑撑伞的省力、稳定等. 031330 (1) $\dfrac 12$; (2) 证明略; (3) $\dfrac 49x^2+\dfrac 45 y^2=1$($y>0$) 031331 (1) $a=-1$; (2) 当$a\ge 0$时, $f(x)$在$(0,+\infty)$上是严格增函数; 当$a<0$时, $f(x)$在$(0,-\dfrac 1a]$上是严格增函数, 在$[-\dfrac 1a,+\infty)$上是严格减函数; (3) (i) $(-\dfrac 1{\mathrm{e}},0)$; (ii) $(\dfrac 12,+\infty)$ 014743 $\pi$ 014744 $1$ 014745 $9$ 014746 $80$ 014747 $3$ 014748 $0.3$ 014749 $\dfrac{\sqrt{3}}3\pi$ 014750 $9$ 014751 $8$ 014752 $1$ 014753 $[16-\sqrt{2},16+\sqrt{2}]$ 014754 $10-4\sqrt{7}$ 014755 D 014756 A 014757 B 014758 B 014759 (1) $\dfrac\pi 3$; (2) 最大值为$6$ 014760 (1) $\dfrac 56$; (2) 证明略($H$和点$E$重合); (3) $\arcsin\dfrac{\sqrt{6}}3$ 014761 (1) 证明略; $a_n=5^{n-1}+1$; (2) $999$ 014762 (1) $\dfrac{x^2}4+\dfrac{y^2}3=1$; (2) $4$; (3) $8$ 014763 (1) $0$是极大值点, $2$是极小值点; (2) $[\dfrac 72-\ln 4,+\infty)$; (3) 证明略