ans 012613 $\{2,4\}$ 012614 $(1,2)$ 012615 $\dfrac{\sqrt{2}}2$ 012616 $3$ 012617 $3$ 012618 \textcircled{1}\textcircled{4} 012619 $180$ 012620 $4$ 012621 $\dfrac 52$ 012622 $\dfrac\pi 4$ 012623 $\dfrac{8\sqrt{2}\pi}3$ 012624 $\dfrac{8\sqrt{3}}3$ 012625 A 012626 C 012627 D 012628 C 012629 (1) $b_n=3^{n-1}$; (2) $-8$ 012630 (1) $\dfrac \pi 4$; (2) $1$ 012631 (1) 证明略; (2) 证明略; (3) $\dfrac\pi 4$ 012632 (1) $\sqrt{2}$; (2) $y=x+1$; (3) 过定点$(-3,0)$和$(1,0)$ 012633 (1) $y=x-1$; (2) 单调减区间为$(\dfrac 12 1)$; 极小值为$-2$; (3) 证明略 012571 $\{1\}$ 012572 $-1$ 012573 $\dfrac\pi 6$ 012574 $2$ 012575 $16\pi$ 012576 $2800$, $31$ 012577 $2$ 012578 $(-\infty,1)\cup (1,3]$ 012579 $5$ 012580 $[\dfrac 32,2]$ 012581 $(\dfrac 72,0,\dfrac 72)$ 012582 $\dfrac{\sqrt{3}}{20}v$ 012583 A 012584 D 012585 C 012586 C 012587 (1) 证明略; (2) $\dfrac{3\sqrt{22}}{11}$ 012588 (1) $\dfrac 12$; (2) $a_n=\dfrac{18}{2n+1}$ 012589 (1) 例如: 非通勤时段的车辆使用情况; 油价和电价的变化; 工作单位能否提供免费充电; 电动车的国家减免政策的变化; 车辆的外观、内饰与品牌效应; 车牌费用等; (2) 解答略 012590 (1) $\dfrac{x^2}4+\dfrac{y^2}3=1$($y\le 0$); (2) $P(-\dfrac 32,\dfrac{\sqrt{3}}2)$, $Q(\dfrac 32, \dfrac{\sqrt{3}}2)$; (3) $[\sqrt{3}-1,\sqrt{2}+1]$ 012591 (1) 导数为$y'=\dfrac{1-\ln x}{x^2}$, 单调性证明略; (2) 判断$89^{99}>99^{89}$, 证明略, 推广可以是:``对于实数$a,b$, 若$\mathrm{e}b^a$; (3) 证明略 010965 $[0,2]$ 010966 $(-\infty,0)$ 030023 $\dfrac{3n^2-5n}2$ 010968 $\dfrac{8\pi}3$ 010969 $2(x+2)-(y-1)=0$ 010970 $\dfrac 32$ 030025 $[0,\dfrac 34]$ 010972 $25$ 030024 $\dfrac 23(\dfrac 1{4^n}-1)$ 010974 $[1,+\infty)$ 010975 $\sqrt{3}$ 010976 $3-\sqrt{3}$ 010977 B 002745 C 010979 C 010980 B 010981 (1) $\dfrac 23$; (2) $\arctan {2\sqrt{5}}5$ 010982 (1) $\log_2 3$; (2) $a=2b\ne 0$ 010983 (1) $\sqrt{7}$千米; (2) 有$\dfrac{8-\sqrt{15}}7$小时, 两人不能通话 010984 (1) $y^2=4\sqrt{5} x$或$y^2=-4\sqrt{5} x$; (2) $M$的坐标为$(0,0)$或$(-\dfrac{4\sqrt{5}}5,0)$; (3) 证明略 010985 (1) $\{-6,-3,-2,-1,0,1,2,3,4\}$; (2) 证明略; (3) 元素个数为$\dfrac 12 n(n+1)$; 元素之和为$\dfrac{n+1}2(3^{n+1}-3)$