This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具/新题相似相同比对.py

109 lines
3.5 KiB
Python

import os,re,difflib,Levenshtein,time,json
# 重要!!! 范围
old_problems_range = "1:50000"
threshold = 0.85
# 待比对的文件
filename = r"C:\Users\weiye\Documents\wwy sync\临时工作区\自拟题目14.tex"
#生成数码列表, 逗号分隔每个区块, 区块内部用:表示整数闭区间
def generate_number_set(string):
string = re.sub(r"[\n\s]","",string)
string_list = string.split(",")
numbers_list = []
for s in string_list:
if not ":" in s:
numbers_list.append(s.zfill(6))
else:
start,end = s.split(":")
for ind in range(int(start),int(end)+1):
numbers_list.append(str(ind).zfill(6))
return numbers_list
#字符串预处理
def pre_treating(string):
string = re.sub(r"\\begin\{center\}[\s\S]*?\\end\{center\}","",string)
string = re.sub(r"(bracket\{\d+\})|(blank\{\d+\})|(fourch)|(twoch)|(onech)|(mathrm)|(text)","",string)
string = re.sub(r"[\s\\\{\}\$\(\)\[\]]","",string)
string = re.sub(r"[\n\t]","",string)
string = re.sub(r"(displaystyle)|(overrightarrow)","",string)
string = re.sub(r"[,\.:;?]","",string)
return string
#difflab字符串比较
def difflab_get_equal_rate(str1, str2):
return difflib.SequenceMatcher(None, str1, str2).ratio()
#Levenshtein jaro字符串比较
def jaro_get_equal_rate(str1,str2):
return Levenshtein.jaro(str1,str2)
#Levenshtein 字符串比较
def Lev_get_equal_rate(str1,str2):
return Levenshtein.ratio(str1,str2)
def GenerateProblemListFromString(problem_string):
try:
data = re.findall(r"\\begin\{document\}([\s\S]*?)\\end\{document\}",problem_string)[0]
except:
data = problem_string
data = re.sub(r"\n{2,}","\n",data)
data = re.sub(r"\\item",r"\\enditem\\item",data)
data = re.sub(r"\\end\{enumerate\}",r"\\enditem",data)
ProblemList_raw = [p.strip() for p in re.findall(r"\\item([\s\S]*?)\\enditem",data)]
ProblemsList = []
for p in ProblemList_raw:
startpos = data.index(p)
tempdata = data[:startpos]
suflist = re.findall(r"\n\%[\dA-Za-z]+",tempdata)
if len(suflist) > 0:
suffix = suflist[-1].replace("%","").strip()
else:
suffix = ""
ProblemsList.append((p,suffix))
return ProblemsList
#指定对比方法
sim_test = jaro_get_equal_rate
#读入题库
with open(r"../题库0.3/Problems.json","r",encoding = "utf8") as f:
database = f.read()
pro_dict = json.loads(database)
output = ""
with open(filename,"r",encoding="u8") as f:
newdatabase = f.read()
new_pro_list = GenerateProblemListFromString(newdatabase)
pro_dict_treated = {}
idrange_raw = generate_number_set(old_problems_range)
idrange = [id for id in pro_dict if id in idrange_raw]
for p in idrange:
pro_dict_treated[p] = pre_treating(pro_dict[p]["content"])
new_dict_treated = {}
for i in range(len(new_pro_list)):
new_dict_treated[i+1] = pre_treating(new_pro_list[i][0])
for i in new_dict_treated:
new_p = new_dict_treated[i]
maxsim = 0
for p in pro_dict_treated:
old_p = pro_dict_treated[p]
sim = sim_test(new_p,old_p)
if sim > maxsim:
maxsim = sim
argmax = p
print("%.3f\t%d\t%s" %(maxsim,i,argmax))
output += ("%.3f\t%d\t%s" %(maxsim,i,argmax)) + "\n"
# print("\n新题: %s" %new_pro_list[i-1][0])
# print("\n原题: %s\n\n\n" %pro_dict[]["content"])
with open("临时文件/新题相似相同.txt","w",encoding = "u8") as f:
f.write(output)