255 lines
2.6 KiB
Plaintext
255 lines
2.6 KiB
Plaintext
ans
|
|
011263
|
|
$[1,4]$
|
|
|
|
011266
|
|
$3$
|
|
|
|
014166
|
|
$1+\dfrac 1a$
|
|
|
|
014167
|
|
$(-\infty,-1)\cup (1,+\infty)$
|
|
|
|
014168
|
|
$3$
|
|
|
|
014169
|
|
C
|
|
|
|
014171
|
|
$2$
|
|
|
|
014177
|
|
$3$
|
|
|
|
014178
|
|
$3$
|
|
|
|
014179
|
|
$(1,+\infty)$
|
|
|
|
014193
|
|
$1$
|
|
|
|
014194
|
|
$(0,1)$
|
|
|
|
014199
|
|
$(4,5]$
|
|
|
|
014170
|
|
证明略
|
|
|
|
012891
|
|
(1) 当$a>0$时, $y=f(x)$为严格增函数; 当$a<0$时, $y=f(x)$为严格减函数; (2) 当$a>0$时, 取值范围为$(-\infty,\log_{\frac 32}(-\dfrac a{2b}))$; 当$a<0$时, 取值范围为$(\log_{\frac 32}(-\dfrac a{2b}),+\infty)$
|
|
|
|
012892
|
|
(1) $\dfrac 32$; (2) $(-1,+\infty)$; (3) $\{-3\}\cup (1,+\infty)$
|
|
|
|
014175
|
|
$4$
|
|
|
|
014174
|
|
$10$
|
|
|
|
014172
|
|
$\dfrac{\sqrt{5}-1}2$
|
|
|
|
014176
|
|
$4$
|
|
|
|
014180
|
|
$\dfrac{1}{0.57^2}$
|
|
|
|
014181
|
|
D
|
|
|
|
014183
|
|
\textcircled{1}\textcircled{3}\textcircled{4}
|
|
|
|
014203
|
|
$2$
|
|
|
|
014288
|
|
$2$
|
|
|
|
014290
|
|
$(\dfrac 15,\dfrac 12)$
|
|
|
|
014182
|
|
$-\dfrac 32$
|
|
|
|
012915
|
|
(1) $a\in (0,9)\cup (9,+\infty)$, $b=3$; (2) $4\sqrt{2}$
|
|
|
|
013800
|
|
(1) $[-\dfrac 14,2]$; (2) $g(a)=\dfrac 12 a^2-\dfrac 12 a$, $D=(1,2]$; (3) $[-1,\dfrac 14]$
|
|
|
|
012824
|
|
$0$
|
|
|
|
012825
|
|
$(-\infty,\dfrac 13)\cup (\dfrac 13,+\infty)$
|
|
|
|
012826
|
|
$(-2,1)$
|
|
|
|
012847
|
|
$[\dfrac 52,+\infty)$
|
|
|
|
012848
|
|
(如)$(-1,-4)$, 所有满足要求的数对为$(t,4t)$, 其中$t<0$
|
|
|
|
012849
|
|
A
|
|
|
|
012850
|
|
A
|
|
|
|
012851
|
|
$[\dfrac 32,2)$
|
|
|
|
012829
|
|
\textcircled{1}\textcircled{4}
|
|
|
|
012830
|
|
$\{-1,0\}$
|
|
|
|
012855
|
|
(1) 当$a=0$时, $y=f(x)$是偶函数; 当$a\ne 0$时, $y=f(x)$既不是奇函数, 又不是偶函数; (2) $(-\infty,16]$
|
|
|
|
014192
|
|
(1) 无整数解, 理由略; (2) $(-\dfrac{2023}2,+\infty)$
|
|
|
|
012834
|
|
$[-1,2)\cup (2,+\infty)$
|
|
|
|
012835
|
|
$[-1,10)$
|
|
|
|
012836
|
|
A
|
|
|
|
012837
|
|
$3$
|
|
|
|
012857
|
|
$\dfrac 43$
|
|
|
|
012858
|
|
$2$
|
|
|
|
012859
|
|
$f(\dfrac 73)>f(\dfrac 72)>f(\dfrac 75)$
|
|
|
|
012839
|
|
$(1,2)$
|
|
|
|
012841
|
|
$(-\infty,2)$
|
|
|
|
012842
|
|
$-8$
|
|
|
|
012843
|
|
A
|
|
|
|
014190
|
|
(1) 存在, $a=0$; (2) 存在, $a=-1$, $b=0$
|
|
|
|
014191
|
|
(1) $(-\infty,-1]\cup [1,+\infty)$; (2) $f(b)=\begin{cases}1, & b\le 0,\\1-b^2, & 0\le b\le 2,\\ 5-4b, & b\ge 2.\end{cases}$
|
|
|
|
012856
|
|
$(-\infty,-2]\cup [2,+\infty)$
|
|
|
|
012870
|
|
二
|
|
|
|
012871
|
|
$6$
|
|
|
|
012872
|
|
$(-\pi,0)\cup (\pi,+\infty)$
|
|
|
|
012893
|
|
$(2,+\infty)$
|
|
|
|
012894
|
|
$\dfrac 13$
|
|
|
|
012895
|
|
C
|
|
|
|
012896
|
|
$(0,1]$
|
|
|
|
012897
|
|
$-4$
|
|
|
|
012874
|
|
$(-\infty,-8]$
|
|
|
|
012875
|
|
$0$
|
|
|
|
013840
|
|
$[-2,2]$
|
|
|
|
013841
|
|
B
|
|
|
|
013842
|
|
(1) $2$; (2) $[\dfrac 12,+\infty)$
|
|
|
|
013843
|
|
(1) $[-2,-1]$; (2) $[-2,0]$
|
|
|
|
013844
|
|
存在, 范围为$[-3,1]$
|
|
|
|
012881
|
|
$9$
|
|
|
|
012882
|
|
$\dfrac 1{100}$或$1$
|
|
|
|
012883
|
|
$[0,1)$
|
|
|
|
012884
|
|
B
|
|
|
|
012885
|
|
D
|
|
|
|
012887
|
|
\textcircled{2}\textcircled{4}
|
|
|
|
012905
|
|
A
|
|
|
|
012906
|
|
D
|
|
|
|
012907
|
|
B
|
|
|
|
012908
|
|
$x^2+8x+15$
|
|
|
|
012912
|
|
$\dfrac 12$
|
|
|
|
012913
|
|
B
|
|
|
|
012901
|
|
当$p\in [1,3)$时, 方程无解; 当$p\ge 3$时, 方程有且仅有一解
|
|
|
|
012902
|
|
(1) 证明略; (2) 存在, $a=\dfrac{5-\sqrt{5}}2$, $b=\dfrac{5+\sqrt{5}}2$
|
|
|
|
012903
|
|
(1) 总是奇函数, 一定不是偶函数; (2) $(2,+\infty)$ |