This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具v4/文本文件/metadata.txt

72 lines
2.1 KiB
Plaintext

ans
018553
$25$的平方根是$5$与$-5$, $-25$的平方根是$5\mathrm{i}$与$-5\mathrm{i}$
024821
两根为$1\pm \dfrac{\sqrt{6}}{2}\mathrm{i}$, 因式分解的结果为$2(x-1-\dfrac{\sqrt{6}}{2}\mathrm{i})(x-1+\dfrac{\sqrt{6}}{2}\mathrm{i})$
018555
$p=8$, $q=26$
018556
有错误, 错在$|x_1|^2$不能整理成$x_1^2$; 正确的解答可以通过分判别式$\ge 0$与$<0$进行, $m=-15$或$16$
009657
$(-1,0)$
009659
$-\dfrac{1}{3}$
018557
(1) $r=2$, $\theta=\dfrac{\pi}{6}$, 三角形式为$2(\cos\dfrac{\pi}{6}+\mathrm{i}\sin\dfrac{\pi}{6})$;\\
(2) $r=\sqrt{2}$, $\theta=\dfrac{3\pi}{4}$, 三角形式为$\sqrt{2}(\cos\dfrac{3\pi}{4}+\mathrm{i}\sin\dfrac{3\pi}{4})$;\\
(3) $r=1$, $\theta=\pi$, 三角形式为$2(\cos\pi+\mathrm{i}\sin\pi)$;\\
(4) $r=5$, $\theta=\pi+\arctan\dfrac{4}{3}$, 三角形式为$5(\cos(\pi+\arctan\dfrac{4}{3})+\mathrm{i}\sin(\pi+\arctan\dfrac{4}{3}))$.
018558
(1) $\cos(-\theta)+\mathrm{i}\sin(-\theta)$; (2) $2(\cos(\pi+\alpha)+\mathrm{i}\sin(\pi+\alpha))$
018559
$-3-\sqrt{3}\mathrm{i}$
018560
B
009660
(1) 是, 理由略; (2) 不是, 理由略; (3) 是, 理由略; (4) 不是, 理由略; (5) 不是, 理由略; (6) 不是, 理由略
009661
(1) $3(\cos 0+\mathrm{i}\sin 0)$; (2) $2(\cos\dfrac{3\pi}{2}+\mathrm{i}\sin\dfrac{3\pi}{2})$; (3) $\sqrt{2}(\cos\dfrac{\pi}{4}+\mathrm{i}\sin\dfrac{\pi}{4})$; (4) $2(\cos\dfrac{2\pi}{3}+\mathrm{i}\sin\dfrac{2\pi}{3})$.
018561
$\cos(\dfrac{\pi}{2}-\alpha)+\mathrm{i}\sin(\dfrac{\pi}{2}-\alpha)$
018562
$\begin{cases}\dfrac{1}{\cos\theta}(\cos\theta+\mathrm{i}\sin\theta), & \theta \in (0,\dfrac{\pi}{2}),\\ -\dfrac{1}{\cos\theta}(\cos(\pi+\theta)+\mathrm{i}\sin(\pi+\theta)), & \theta \in (\dfrac{\pi}{2},\pi)\end{cases}$
018563
$\dfrac{3}{2}+\dfrac{3\sqrt{3}}{2}\mathrm{i}$
018564
$(1-\sqrt{3})-(1+\sqrt{3})\mathrm{i}$
018565
$2\mathrm{i}$
018566
$-1024$
018568
$x=\pm(\sqrt{3}+\mathrm{i})$或$\pm(1-\sqrt{3}\mathrm{i})$
018569
$n$的最小值为$6$, 相应的$z$的值为$-\dfrac{27}{64}$
009662
(1) $16\mathrm{i}$; (2) $3\mathrm{i}$; (3) $-2\sqrt{6}+2\sqrt{2}\mathrm{i}$
009663
$\pm 1$与$\pm \mathrm{i}$