This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具/文本文件/metadata.txt

548 lines
5.3 KiB
Plaintext

ans
13512
$2$
13513
$x=\mu$
13514
可能异面, 可能相交
13515
$\dfrac{y^2}{15}+\dfrac{x^2}{16}=1$, $x\ne 0$
13516
$[1,15]$
13517
$-\dfrac 13$
13518
$\dfrac 43$
13519
$(-\infty,-1]\cup [3,+\infty)$
13520
$\sqrt{3}$
13521
$\pi$
13522
A
13523
D
13524
B
13525
(1) $\dfrac{5}{12}\text{h}$; (2) 能, $v$的取值范围为$(\dfrac{9\sqrt{3}}2,\dfrac{\sqrt{559}}3]$
13526
(1) 证明略; (2) $\dfrac{a_1}{a_2}\le \dfrac{a_1+a_3+\cdots+a_{2n-1}}{a_2+a_4+\cdots+a_{2n}}$, 当且仅当$n=1$或$d=0$时成立等号; (3) $2023^2$
13527
$\{(0,1),(2,5)\}$
13528
$x>1$且$y>1$
13529
$\sqrt{2}$
13530
$(-\infty,-8]\cup [2,+\infty)$
13531
$[-2,2]$
13532
$\dfrac 13$
13533
$\dfrac{4\pi}{3}$
13534
$20$
13535
\textcircled{3}\textcircled{4}
13536
\textcircled{1}\textcircled{3}\textcircled{4}
13537
B
13538
C
13539
D
13540
(1) 甲与乙的平均数分别为$7$和$7$; (2) 甲与乙的方差分别为$3$和$1.2$; (3) 两人射击水平相当, 甲的发挥更稳定
13541
(1) $\dfrac 12$; (2) $\dfrac{4\sqrt{5}}5$
13542
$3.5$
13543
$\dfrac{20}{11}$
13544
$a=\pm 1$
13545
$-17$
13546
$0.7$
13547
$5$
13548
$6\sqrt{3}$
13549
$0.6$
13550
$2\pi^2+16\pi$
13551
$\dfrac 83$
13552
C
13553
C
13554
B
13555
(1) $f(x)=\begin{cases}2^x-1+\log_2 (x+1), & x\ge 0, \\ 1-2^{-x}-\log_2(-x+1), & x<0;\end{cases}$ (2) $f(x)=-2^{x-2}+1-\log_2(x-1)$, $1<x\le 3$
13556
(1) $6$; (2) $-4$
13557
$(-\infty,-1)\cup (1,+\infty)$
13558
$240$
13559
$\dfrac 92$
13560
$(-\dfrac 32,+\infty)$
13561
$x+3y=0$或$x+y-4=0$
13562
$\dfrac 52$
13563
$\dfrac{\sqrt{5}+1}4$
13564
$\dfrac{1}{15}$
13565
$4$
13566
$\dfrac{3\sqrt{5}}5$
13567
B
13568
D
13569
D
13570
(1) $\chi^2=24>6.635$, 有$99.9\%$的把握认为患该疾病群体与为患该疾病群体的卫生习惯有差异; (2) 证明略, $R$的估计值为$6$
13571
(1) $y=2x$; (2) $(-\infty,-1)$
13572
$-\dfrac 12$
13573
$2\pi$
13574
$\dfrac{\sqrt{6}}2a^2$
13575
$3x-y-2=0$
13576
$-\dfrac{3}{25}\overrightarrow{b}$
13577
$-2$
13578
$\dfrac{2\sqrt{5}}5$
13579
$[\dfrac 54,\dfrac{3\sqrt{17}}4]$
13580
$77$
13581
$4$
13582
A
13583
B
13584
D
13585
(1) $0.89$; (2) $0.0014$
13586
(1) $x^2-\dfrac{y^2}{3}=1$; (2) 证明略
13587
$\{1,2\}$
13588
$2$
13589
$6$
13590
$3$
13591
$5$
13592
$-\sqrt{2}$
13593
$\dfrac 16$
13594
$-28$
13595
$0.14$
13596
$2$
13597
$\ln 2$
13598
$\dfrac{\sqrt{13}}2$
13599
A
13600
C
13601
C
13602
B
13603
(1) $\dfrac\pi 6$; (2) $6+6\sqrt{3}$
13604
(1) 证明略; (2) $\dfrac{\sqrt{6}}8$
13605
(1) $X\sim \begin{pmatrix} 0 & 20 & 100\\ 0.2 & 0.32 & 0.48\end{pmatrix}$; (2) 应选择先回答B类问题
13606
(1) $\dfrac{x^2}{25}+\dfrac{y^2}{9}=1$; (2) $2\sqrt{2}+\sqrt{17}$; (3) 定值为$34$
13607
(1) $y=x$; (2) 在$[0,+\infty)$上是严格增函数; (3) 证明略
13608
$1$
13609
$[\dfrac 12,1]$
13610
$2\sqrt{3}$
13611
$x\le \dfrac{a+b}{2}$, 等号成立当且仅当$a=b$
13612
$2x-y+1=0$
13613
$\dfrac{3\pi}{4}$
13614
$115$
13615
$-1$
13616
如$x^2+(y-2)^2=1$等(答案不唯一)
13617
$(0,-4)$
13618
$72$
13619
$\dfrac 78$
13620
B
13621
A
13622
C
13623
C
13624
(1) $\dfrac 13$; (2) 证明略
13625
(1) $a_n=3n-1$; (2) $S_n=\dfrac{21}{4}-\dfrac{6n+7}{4\cdot 3^{n-1}}$
13626
(1) $V=x(3-2x)^2$, $x\in (0,\dfrac 32)$; (2) 当$x=\dfrac 12$时, $V$取到最大值$2$
13627
(1) 最小正周期为$\pi$, 取值范围为$[-1,2]$; (2) $\sqrt{3}$
13628
(1) $2$; (2) 双曲线方程为$x^2-\dfrac{y^2}{3}=1$, 过顶点$(2,0)$与$(-1,0)$
13629
$4$或$-6$
13630
$(\dfrac\pi 6,\dfrac{5\pi}6)$
13631
$44$
13632
$41$
13633
$1$
13634
$24$
13635
$\dfrac{7\sqrt{3}}3\pi$
13636
$20$
13637
$2.5$
13638
$76$元
13639
$p_1$,$p_4$
13640
$\dfrac 34$
13641
D
13642
B
13643
C
13644
B
13645
证明略
13646
(1) $\dfrac\pi 3$; (2) $(6,12]$
13647
(1) $0.6$; (2) $x\sim \begin{pmatrix}0 & 10 & 20 & 30\\0.16 & 0.44 & 0.34 & 0.06\end{pmatrix}$, $E[X]=13$
13648
(1) $\dfrac{x^2}3+y^2=1$; (2) $\sqrt{6}$; (3) $1$
13649
(1) 在$(-1,1)$上是严格增函数, 在$(1,+\infty)$上是严格减函数; (2) $(-\infty,0]$; (3) 证明略
13650
$\{(0,0),(1,0),(-1,0)\}$
13651
$7$
13652
$-2$
13653
$0$
13654
$\dfrac{6\pi}{5}$
13655
$0.75$
13656
$(-6,2)$
13657
$\dfrac{2\sqrt{3}}3$
13658
$\dfrac{16}3$
13659
$\dfrac\pi 6$
13660
\textcircled{1}\textcircled{2}\textcircled{4}
13661
$12120$
13662
B
13663
B
13664
D
13665
D
13666
(1) $1$; (2) $\arcsin\dfrac{\sqrt{3}}4$
13667
(1) $\sqrt{7}$; (2) $-1-\dfrac{\sqrt{3}}2$
13668
(1) $(x-2)^2+y^2=\dfrac{12}7$; (2) $\dfrac{3\sqrt{2}}2$或$\dfrac{\sqrt{2}}2$
13669
(1) $\dfrac 25$; (2) $X\sim \begin{pmatrix} 0 & 1 & 2 \\ \dfrac{6}{25} & \dfrac{13}{25} & \dfrac{6}{25}\end{pmatrix}$; (3) 不认为人数有变化, 理由略
13670
(1) $y=x-1$; (2) $(-\infty,\dfrac{3}{2}]$; (3) $(-\infty,\dfrac{\sqrt{2}}2)$
13671
$1$
13672
$3$
13673
$\dfrac 12$
13674
$(0,2)$
13675
$2$
13676
$0.57$
13677
$\dfrac 72+\sqrt{6}$
13678
$\dfrac\pi 3$或$\dfrac{2\pi}3$
13679
$\sqrt{5}$
13680
$\dfrac{7\sqrt{3}}3$
13681
$\dfrac 83$
13682
$\dfrac 32$
13683
A
13684
C
13685
A
13686
B
13687
(1) 证明略; (2) $\dfrac\pi 6$
13688
(1) 证明略; (2) $(\dfrac 94,\dfrac{15}4)$
13689
(1) $l=\dfrac{1}{\sin \theta}+\dfrac{1}{\cos\theta}+\dfrac{1}{\sin\theta\cdot \cos\theta}$, $\theta\in (\dfrac\pi 6,\dfrac\pi 3)$; (2) $2+2\sqrt{2}$, 此时$\theta=\dfrac\pi 4$
13690
(1) $\dfrac{\sqrt{2}}2$; (2) $t=\dfrac{\sqrt{6}}3b$
13691
(1) $a=1$, $b=0$; (2) $3$; (3) 证明略