127 lines
1.5 KiB
Plaintext
127 lines
1.5 KiB
Plaintext
ans
|
|
012287
|
|
$\{-1,0,1\}$
|
|
|
|
012288
|
|
$\pi$
|
|
|
|
012289
|
|
$3+4\mathrm{i}$
|
|
|
|
012290
|
|
$2$
|
|
|
|
012291
|
|
$1$
|
|
|
|
012292
|
|
$16\pi$
|
|
|
|
012293
|
|
$(-\dfrac 15,\dfrac 25)$
|
|
|
|
012294
|
|
$[-1,\dfrac 12]$
|
|
|
|
012295
|
|
$(4,5]$
|
|
|
|
012296
|
|
$y=\pm 2\sqrt{2} x$
|
|
|
|
012297
|
|
$\dfrac{5\sqrt{3}}6\pi$
|
|
|
|
012298
|
|
$(0,2)$, $-6$
|
|
|
|
012299
|
|
B
|
|
|
|
012300
|
|
C
|
|
|
|
012301
|
|
A
|
|
|
|
012302
|
|
A
|
|
|
|
012303
|
|
(1) 证明略; (2) $\arccos \dfrac{\sqrt{5}}3$
|
|
|
|
012304
|
|
(1) $\dfrac\pi 3$; (2) $2\sqrt{3}+2$
|
|
|
|
012305
|
|
(1) $120$米; (2) $20$米时, 总造价最低
|
|
|
|
012306
|
|
(1) $\dfrac{x^2}3+y^2=1$; (2) $\dfrac 12$; (3) $2$
|
|
|
|
012307
|
|
(1) $f(x)=\mathrm{e}^{x+1}$; (2) $g(n)=\begin{cases}\dfrac{3n-1}{2}, & n\text{为奇数},\\ \dfrac{3n-2}{2}, & n\text{为偶数};\end{cases}$ (3) 存在``阈度'', 取值范围为$[\dfrac{\mathrm{e}^4+1}{\mathrm{e}^4-\mathrm{e}},+\infty)$
|
|
|
|
012308
|
|
$\{2,3,4\}$
|
|
|
|
012309
|
|
$(-\dfrac 12,2)$
|
|
|
|
012310
|
|
$6$
|
|
|
|
012311
|
|
$2$
|
|
|
|
012312
|
|
$-8$
|
|
|
|
012313
|
|
$-4$
|
|
|
|
012314
|
|
$\dfrac 12$
|
|
|
|
012315
|
|
$\sqrt{3}$
|
|
|
|
012316
|
|
$y=2x-1$
|
|
|
|
012317
|
|
$2$
|
|
|
|
012318
|
|
$[-4,12]$
|
|
|
|
012319
|
|
$2+\sqrt{3}$
|
|
|
|
012320
|
|
D
|
|
|
|
012321
|
|
A
|
|
|
|
012322
|
|
B
|
|
|
|
012323
|
|
A
|
|
|
|
012324
|
|
(1) $\dfrac 43$; (2) $\arccos \dfrac{\sqrt{6}}6$
|
|
|
|
012325
|
|
(1) $[k\pi-\dfrac{3\pi}8,k\pi+\dfrac\pi 8]$($k\in \mathbf{Z}$); (2) $[-\dfrac{\sqrt{2}}2,\dfrac{\sqrt{2}}2]$
|
|
|
|
012326
|
|
(1) $y=-0.02x^2+100$($0\le x\le 50$); (2) $f(x)=\begin{cases}x(-0.02x^2+100), & 30\le x\le 50, \\ x(-x+100), & 50<x\le 70;\end{cases}$ (3) 当点$D$在曲线段$BC$上且其到$OA$的距离约为$66.7$米时, 游乐场的面积$S$最大
|
|
|
|
012327
|
|
(1) $\dfrac{x^2}{\frac{1+\sqrt{5}}2}+y^2=1$; (2) $\dfrac{4+2\sqrt{3}}5$; (3) 相切, 证明略
|
|
|
|
012328
|
|
(1) $[4,+\infty)$; (2) 证明略; (3) $4$或$5$
|