1596 lines
14 KiB
Plaintext
1596 lines
14 KiB
Plaintext
ans
|
||
|
||
032149
|
||
$32$
|
||
|
||
032159
|
||
${2}$
|
||
|
||
032160
|
||
$(-\infty,-1)\cup (1,+\infty)$
|
||
|
||
032161
|
||
$48.5$
|
||
|
||
032162
|
||
$4-3\mathrm{i}$
|
||
|
||
032163
|
||
$\frac{13}{4}$
|
||
|
||
032164
|
||
$35$
|
||
|
||
032165
|
||
$\dfrac{24}{7}$
|
||
|
||
032166
|
||
$12$
|
||
|
||
032167
|
||
$(-1,1)$
|
||
|
||
032168
|
||
$\dfrac{3}{5}$
|
||
|
||
032169
|
||
$[\sqrt{2},+\infty)$
|
||
|
||
032170
|
||
$-5$
|
||
|
||
032171
|
||
D
|
||
|
||
032172
|
||
B
|
||
|
||
032173
|
||
C
|
||
|
||
032174
|
||
B
|
||
|
||
032175
|
||
$(1)\dfrac{2\sqrt{2}\pi}{3};\quad(2)\mathrm{arctan}\dfrac{\sqrt{13}}{13}$
|
||
|
||
032176
|
||
$(1)\dfrac{\pi}{6};\quad(2)\sqrt{7}$
|
||
|
||
032177
|
||
$(1)\chi^2 \approx 35.428; \quad (2)\dfrac{705}{833}$
|
||
|
||
032178
|
||
$(1)|PF|=\dfrac{15}{14}; \quad (2) k_{PM}=-\dfrac{\sqrt{5}}{2}; \quad (3)(\dfrac{11}{7},\dfrac{15}{14})$
|
||
|
||
032179
|
||
(1)具有性质$P$,理由略; $\quad$ (2)$(-\infty,0); \quad$ (3)具有性质$P$,所有公差的取值集合为$\{1,2\}$
|
||
|
||
032184
|
||
$\dfrac{2}{3}$
|
||
|
||
032185
|
||
$(-\dfrac{6}{5},-\dfrac{3}{5})$
|
||
|
||
032186
|
||
$\{0,\dfrac{\sqrt{3}}{2},-\dfrac{\sqrt{3}}{2}\}$
|
||
|
||
032187
|
||
C
|
||
|
||
032188
|
||
A
|
||
|
||
030993
|
||
A
|
||
|
||
032189
|
||
B
|
||
|
||
032190
|
||
(1)证明略; $\quad$ (2)正切值为$\dfrac{\sqrt{5}}{5}$
|
||
|
||
032191
|
||
(1)$2\sqrt{6}$; $\quad$ (2)$(\dfrac{1}{2},\dfrac{\sqrt{2}}{2})$
|
||
|
||
032192
|
||
(1)$300$; $\quad$ (2)$0.8186$; $\quad$ (3)$Y \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \dfrac{1}{20} & \dfrac{9}{20} & \dfrac{9}{20} & \dfrac{1}{20} \end{pmatrix},E[Y]=\dfrac{3}{2}$
|
||
|
||
032193
|
||
(1)$\dfrac{\sqrt{6}}{3}$; $\quad$ (2)$\dfrac{4}{3}$或$\dfrac{4\sqrt{6}}{9}$ $\quad$(3)$P(1,1)$
|
||
|
||
032194
|
||
(1)$a=1$; $\quad$ (2)存在; $\quad$ (3)不存在
|
||
|
||
032200
|
||
$-1$
|
||
|
||
032201
|
||
$\{0,1,2\}$
|
||
|
||
032202
|
||
$-1$
|
||
|
||
032203
|
||
$24$
|
||
|
||
032204
|
||
$10$
|
||
|
||
032205
|
||
$1-\mathrm{e}$
|
||
|
||
032206
|
||
$\pm \dfrac{5}{2}$
|
||
|
||
032207
|
||
$\dfrac{6}{7}$
|
||
|
||
032208
|
||
$\dfrac{\sqrt{5}}{3}$
|
||
|
||
032209
|
||
$(-3,-\dfrac{1}{3}$
|
||
|
||
032210
|
||
$195$
|
||
|
||
032211
|
||
D
|
||
|
||
032212
|
||
C
|
||
|
||
032213
|
||
C
|
||
|
||
032214
|
||
A
|
||
|
||
032215
|
||
(1)证明略; $\quad$ (2)$\dfrac{2\sqrt{5}}{5}$
|
||
|
||
004285
|
||
(1)$f_{\mathrm{max}}(x)=3, T=\pi$; $\quad$ (2)$\dfrac{\sqrt{3}}{4}$
|
||
|
||
032216
|
||
(1)$\sqrt{3}$; $\quad$ (2)证明略; $\quad$ (3)$m=\sqrt{14}$时$P(-\dfrac{6\sqrt{14}}{7},0)$,$\quad$ $m=-\sqrt{14}$时$P(\dfrac{6\sqrt{14}}{7},0)$
|
||
|
||
032217
|
||
(1)$m \geq 1$; $\quad$ (2)存在, 如$a_n=n\pi$(满足$\sin{a_n}=0$或者$\cos{d}=1$的数列$\{a_n\}$,只要不是常数列,都可以,其余数列不行); $\quad$ (3)$(k,b)=(-1,1)$或$(\dfrac{1}{2},\dfrac{2\pi}{3}-\dfrac{\sqrt{3}}{2})$
|
||
|
||
032437
|
||
$2$
|
||
|
||
014707
|
||
$3$
|
||
|
||
030772
|
||
$\pi$
|
||
|
||
032438
|
||
$15$
|
||
|
||
032439
|
||
$10$
|
||
|
||
032440
|
||
$9$
|
||
|
||
032441
|
||
$\dfrac{2}{3}$
|
||
|
||
032442
|
||
$\dfrac{3}{2}$
|
||
|
||
032443
|
||
$\dfrac{1}{3}$
|
||
|
||
032444
|
||
$\dfrac{\sqrt{5}}{2}$
|
||
|
||
032445
|
||
$(-\infty,-2] \cup [-\dfrac{1}{2},+\infty)$
|
||
|
||
032446
|
||
{50,55}
|
||
|
||
032447
|
||
D
|
||
|
||
031003
|
||
D
|
||
|
||
032448
|
||
A
|
||
|
||
032449
|
||
D
|
||
|
||
032450
|
||
(1)$\dfrac{\pi}{3}$; $\quad$ (2)$3+\sqrt{3}$
|
||
|
||
032451
|
||
(1)$\arccos{\dfrac{\sqrt{5}}{10}}$(即$\arctan{\sqrt{19}}$或$\arcsin{\dfrac{19\sqrt{5}}{10}}$); $\quad$ (2) $\dfrac{6}{5}$
|
||
|
||
032452
|
||
(1)$\chi^2 \approx 3.414$,这两类人群的性别没有显著差异; $\quad$ (2)$9$人
|
||
|
||
032453
|
||
(1)$(-1,-\dfrac{8}{3})$; $\quad$ (2) $y=\dfrac{4}{3}x+\dfrac{2}{3}$或$y=\dfrac{2}{3}x+\dfrac{4}{3}$; $\quad$ (3)$|PR|=\dfrac{4(s+1)\sqrt{s+1}}{s}$, $|PR|_\mathrm{min}=6\sqrt{3}$
|
||
|
||
032454
|
||
(1)$-3,-2,-1,0,1$; $\quad$ (2)证明略; $\quad$ (3)$f(x_0) < 0, a\in [-\dfrac{\mathrm{e}}{\mathrm{e}+1},0)$
|
||
|
||
032234
|
||
$(1,4)$
|
||
|
||
032235
|
||
$x=-2$
|
||
|
||
032236
|
||
$\dfrac{1-\mathrm{i}}{2}$
|
||
|
||
032237
|
||
$\dfrac{7}{9}$
|
||
|
||
032238
|
||
$45$
|
||
|
||
032239
|
||
$2^n$
|
||
|
||
032240
|
||
$\dfrac{\pi}{4}$
|
||
|
||
032241
|
||
$(0,1)$
|
||
|
||
032242
|
||
$2$
|
||
|
||
032243
|
||
$60$
|
||
|
||
032244
|
||
$134$
|
||
|
||
032245
|
||
$(\arccos{\dfrac{1}{8}},\pi)$
|
||
|
||
032246
|
||
D
|
||
|
||
032247
|
||
C
|
||
|
||
032248
|
||
B
|
||
|
||
032249
|
||
C
|
||
|
||
032250
|
||
(1)证明略; $\quad$ (2)$2\sqrt{2}$
|
||
|
||
032251
|
||
(1)不是奇函数也不是偶函数; $\quad$ (2)$c=\dfrac{3\sqrt{3} \pm \sqrt{7}}{2}$
|
||
|
||
032252
|
||
(1)$88.5$; $\quad$ (2) $\dfrac{1}{20}$; $\quad$ (3)$\chi^2 \approx 7.62$,有$95\%$的把握认为两种生产方式的工作效率有显著差异
|
||
|
||
032253
|
||
(1)$\dfrac{x^2}{4}+y^2=1$; $\quad$ (2)$G(-\dfrac{4}{3},\dfrac{1}{3}$; $\quad$ (3)$x+2y=0$
|
||
|
||
032254
|
||
(1)证明略; $\quad$ (2)$[-1,+\infty)$; (3)证明略
|
||
|
||
024274
|
||
$(-1,2)$
|
||
|
||
024275
|
||
$2+\mathrm{i}$
|
||
|
||
024276
|
||
$\dfrac{9}{2}$
|
||
|
||
017614
|
||
$-\dfrac{7}{25}$
|
||
|
||
024277
|
||
$\dfrac{7}{2}$
|
||
|
||
024278
|
||
$-\dfrac{1}{2\mathrm{e}}$
|
||
|
||
024279
|
||
$-160$
|
||
|
||
011354
|
||
$\dfrac{16}{51}$
|
||
|
||
024217
|
||
A
|
||
|
||
024280
|
||
D
|
||
|
||
024281
|
||
$(-1,4)$
|
||
|
||
024282
|
||
$\dfrac{\sqrt{2}}{2}$
|
||
|
||
024283
|
||
$\dfrac{\sqrt{15}}{3}$
|
||
|
||
024284
|
||
$\dfrac{2\pi}{3}$
|
||
|
||
019976
|
||
$\sqrt{3}$
|
||
|
||
014717
|
||
$0.3$
|
||
|
||
024285
|
||
$5$
|
||
|
||
024286
|
||
$\dfrac{3}{2}$
|
||
|
||
024287
|
||
C
|
||
|
||
024288
|
||
A
|
||
|
||
004166
|
||
$4$
|
||
|
||
004168
|
||
$2\sin{\dfrac{\pi}{4} x} $
|
||
|
||
023054
|
||
$3\pi$
|
||
|
||
024289
|
||
$\dfrac{2}{\pi}$
|
||
|
||
004170
|
||
$\dfrac{1}{2}$
|
||
|
||
024290
|
||
A
|
||
|
||
004176
|
||
D
|
||
|
||
030621
|
||
$[0,\dfrac{3}{2}]$
|
||
|
||
024291
|
||
$3$
|
||
|
||
030974
|
||
$1$
|
||
|
||
024292
|
||
$0.42$
|
||
|
||
030929
|
||
$2$
|
||
|
||
024293
|
||
$[\mathrm{e}+1,+\infty)$
|
||
|
||
024294
|
||
$18$
|
||
|
||
030641
|
||
$[-1,+\infty)$
|
||
|
||
024295
|
||
A
|
||
|
||
030993
|
||
A
|
||
|
||
030972
|
||
$-1+\mathrm{i}$
|
||
|
||
030624
|
||
$(1,4)$
|
||
|
||
030838
|
||
$45$
|
||
|
||
030743
|
||
$4$
|
||
|
||
030762
|
||
$-\dfrac{7}{25}$
|
||
|
||
024296
|
||
$(2,+\infty)$
|
||
|
||
014713
|
||
$\dfrac{1}{4}$
|
||
|
||
031123
|
||
$y^2=\pm 3x$
|
||
|
||
030990
|
||
A
|
||
|
||
024297
|
||
C
|
||
|
||
004724
|
||
$(0,1)$
|
||
|
||
004726
|
||
$2$
|
||
|
||
004727
|
||
$180$
|
||
|
||
004728
|
||
$12\pi$
|
||
|
||
024298
|
||
$0.4$
|
||
|
||
024299
|
||
$m \geq -3$
|
||
|
||
024300
|
||
$-11$
|
||
|
||
004736
|
||
A
|
||
|
||
004737
|
||
B
|
||
|
||
024301
|
||
$\{1\}$
|
||
|
||
024302
|
||
$-2$
|
||
|
||
024303
|
||
$1$
|
||
|
||
024304
|
||
$1$
|
||
|
||
024305
|
||
$0$
|
||
|
||
017611
|
||
$\dfrac{1}{2}$
|
||
|
||
023955
|
||
$12\pi$
|
||
|
||
024306
|
||
$\hat{y}=3x-3$
|
||
|
||
024307
|
||
D
|
||
|
||
024308
|
||
B
|
||
|
||
024309
|
||
$[-1,3)$
|
||
|
||
024185
|
||
$\dfrac{1}{3}$
|
||
|
||
024310
|
||
$9$
|
||
|
||
012457
|
||
$2\sqrt{3}$
|
||
|
||
024214
|
||
$\dfrac{16}{9}$
|
||
|
||
031718
|
||
$-\dfrac{21}{2}$
|
||
|
||
024176
|
||
$\dfrac{1}{169}$
|
||
|
||
031139
|
||
C
|
||
|
||
024311
|
||
D
|
||
|
||
030964
|
||
$\sqrt{10}$
|
||
|
||
030620
|
||
$[1,2)$
|
||
|
||
030758
|
||
$-2$
|
||
|
||
024312
|
||
$\dfrac{1}{\mathrm{e}}$
|
||
|
||
024313
|
||
$\mathrm{e}$
|
||
|
||
031121
|
||
$5$
|
||
|
||
030858
|
||
$8$
|
||
|
||
024314
|
||
$\dfrac{1}{4}$
|
||
|
||
030645
|
||
D
|
||
|
||
031140
|
||
C
|
||
|
||
024315
|
||
$(2,3)$
|
||
|
||
024316
|
||
$y=3x-2$
|
||
|
||
024317
|
||
$22$
|
||
|
||
023957
|
||
$8$
|
||
|
||
024318
|
||
$6.51$
|
||
|
||
024319
|
||
$(0,\dfrac{1}{4}$
|
||
|
||
024320
|
||
$\dfrac{11}{16}$
|
||
|
||
024321
|
||
A
|
||
|
||
024322
|
||
D
|
||
|
||
024323
|
||
$\{1\}$
|
||
|
||
024324
|
||
$1-\mathrm{i}$
|
||
|
||
024325
|
||
$1$
|
||
|
||
024326
|
||
$160$
|
||
|
||
024327
|
||
$2$
|
||
|
||
024328
|
||
$-3$
|
||
|
||
023939
|
||
$\pi : 4$
|
||
|
||
024329
|
||
$\dfrac{2}{9}$
|
||
|
||
024330
|
||
A
|
||
|
||
024331
|
||
B
|
||
|
||
030615
|
||
$\{0,1,2\}$
|
||
|
||
030966
|
||
$\sqrt{5}$
|
||
|
||
030760
|
||
$\dfrac{1}{2}$
|
||
|
||
024332
|
||
$\dfrac{1}{x-1}$
|
||
|
||
024333
|
||
$5$
|
||
|
||
024334
|
||
$\dfrac{2}{5}$
|
||
|
||
031000
|
||
$\arccos{\dfrac{\sqrt{10}}{10}}$
|
||
|
||
024335
|
||
$\dfrac{8}{3}$
|
||
|
||
030674
|
||
B
|
||
|
||
030637
|
||
$(-2,1)$
|
||
|
||
030839
|
||
$8$
|
||
|
||
024336
|
||
$(-\infty,-1],[1,+\infty)$
|
||
|
||
024337
|
||
$60$
|
||
|
||
024338
|
||
$\dfrac{1}{3}$
|
||
|
||
030888
|
||
$1$
|
||
|
||
024339
|
||
$\dfrac{11}{126}$
|
||
|
||
030979
|
||
B
|
||
|
||
030652
|
||
A
|
||
|
||
024340
|
||
$4$
|
||
|
||
024341
|
||
$0.6$
|
||
|
||
024342
|
||
$(0,1]$
|
||
|
||
024343
|
||
$0$
|
||
|
||
024344
|
||
$1$
|
||
|
||
024345
|
||
$\dfrac{\pi}{3}$
|
||
|
||
024346
|
||
$\sqrt{41}$
|
||
|
||
024347
|
||
$\dfrac{20}{21}$
|
||
|
||
024348
|
||
B
|
||
|
||
004177
|
||
B
|
||
|
||
030597
|
||
$0$
|
||
|
||
030973
|
||
$1$
|
||
|
||
030850
|
||
$3$
|
||
|
||
024349
|
||
$-32$
|
||
|
||
030999
|
||
$\sqrt{2}$
|
||
|
||
024350
|
||
$1$
|
||
|
||
024351
|
||
$\dfrac{3}{5}$
|
||
|
||
030775
|
||
$[-\dfrac{\pi}{3},\dfrac{\pi}{6}]$
|
||
|
||
031106
|
||
C
|
||
|
||
030991
|
||
B
|
||
|
||
030618
|
||
$[0,2]$
|
||
|
||
024352
|
||
$y=x+2$
|
||
|
||
024353
|
||
$[-1,1]$
|
||
|
||
031095
|
||
$3$
|
||
|
||
024354
|
||
$-3$或$\dfrac{10}{3}$
|
||
|
||
031069
|
||
$\sqrt{2}$
|
||
|
||
024355
|
||
$\dfrac{1}{9}$
|
||
|
||
024356
|
||
$0.49$
|
||
|
||
024357
|
||
C
|
||
|
||
030944
|
||
A
|
||
|
||
024358
|
||
$\{-1,0,1\}$
|
||
|
||
024359
|
||
$\sqrt{2}$
|
||
|
||
011243
|
||
$-2$
|
||
|
||
024360
|
||
$-\dfrac{2}{3}$
|
||
|
||
024361
|
||
$20$
|
||
|
||
024362
|
||
$\dfrac{4}{3}$
|
||
|
||
011248
|
||
$\{3,\dfrac{\sqrt{3}}{9} \}$
|
||
|
||
011249
|
||
$140$
|
||
|
||
011254
|
||
B
|
||
|
||
024363
|
||
C
|
||
|
||
030605
|
||
$\{3,5\}$
|
||
|
||
030965
|
||
$\sqrt{5}$
|
||
|
||
024364
|
||
$1$
|
||
|
||
024365
|
||
$36$
|
||
|
||
024366
|
||
$\dfrac{45\pi}{2}$
|
||
|
||
024367
|
||
$\dfrac{2}{3}$
|
||
|
||
011628
|
||
$-160$
|
||
|
||
024368
|
||
$0.98$
|
||
|
||
030644
|
||
A
|
||
|
||
024369
|
||
B
|
||
|
||
024370
|
||
$(2,3)$
|
||
|
||
024371
|
||
$-1-\sqrt{3}\mathrm{i}$
|
||
|
||
024372
|
||
$3$
|
||
|
||
024373
|
||
$8$
|
||
|
||
024374
|
||
$\dfrac{5}{12}$
|
||
|
||
024375
|
||
$-\mathrm{e}^{-x}$
|
||
|
||
024376
|
||
$3$
|
||
|
||
024377
|
||
$\dfrac{\sqrt{5}-1}{2}$
|
||
|
||
024378
|
||
B
|
||
|
||
024379
|
||
D
|
||
|
||
024380
|
||
$(-3,1)$
|
||
|
||
024381
|
||
$\sqrt{2}$
|
||
|
||
024382
|
||
$0$
|
||
|
||
024383
|
||
$4$
|
||
|
||
031020
|
||
$16$
|
||
|
||
024384
|
||
$-14$
|
||
|
||
024385
|
||
$-\dfrac{1}{2}$
|
||
|
||
024386
|
||
C
|
||
|
||
024387
|
||
D
|
||
|
||
024388
|
||
$\{0,1\}$
|
||
|
||
024389
|
||
$6$
|
||
|
||
030757
|
||
$\dfrac{4}{5}$
|
||
|
||
004230
|
||
$\sqrt{3}$
|
||
|
||
024390
|
||
$-18$
|
||
|
||
024391
|
||
$\dfrac{\pi}{4}$
|
||
|
||
024392
|
||
$\dfrac{2\pi}{3}$
|
||
|
||
024393
|
||
$7$
|
||
|
||
024394
|
||
B
|
||
|
||
024395
|
||
A
|
||
|
||
030599
|
||
$\{1\}$
|
||
|
||
024396
|
||
$2\sqrt{3}$
|
||
|
||
024397
|
||
$\pm \dfrac{1}{2}$
|
||
|
||
024398
|
||
$[-\sqrt{5},\sqrt{5}]$
|
||
|
||
024399
|
||
$\dfrac{4}{7}$
|
||
|
||
024400
|
||
$y=2x$
|
||
|
||
024401
|
||
$-2$
|
||
|
||
030933
|
||
$[-1,5]$
|
||
|
||
024402
|
||
B
|
||
|
||
031003
|
||
D
|
||
|
||
024403
|
||
$(-\infty,1)\cup(3,+\infty)$
|
||
|
||
024404
|
||
$-\dfrac{1}{4}$
|
||
|
||
024405
|
||
$5$
|
||
|
||
024406
|
||
$36\pi$
|
||
|
||
024407
|
||
$\dfrac{1}{2}$
|
||
|
||
024408
|
||
$\dfrac{10}{9}$
|
||
|
||
024409
|
||
$219$
|
||
|
||
031072
|
||
$\sqrt{6}$
|
||
|
||
024410
|
||
B
|
||
|
||
024411
|
||
C
|
||
|
||
024412
|
||
$\{-2,-1,0\}$
|
||
|
||
030659
|
||
$[6,+\infty)$
|
||
|
||
024413
|
||
$64$
|
||
|
||
024414
|
||
$\dfrac{2}{3}$
|
||
|
||
011267
|
||
$4$
|
||
|
||
024415
|
||
$0.3$
|
||
|
||
024416
|
||
$\sqrt{3}$
|
||
|
||
ans
|
||
|
||
041065
|
||
$1$
|
||
|
||
041066
|
||
$\sqrt{5}$
|
||
|
||
041067
|
||
$\dfrac{x^2}{25}+\dfrac{y^2}{16}=1$
|
||
|
||
041068
|
||
$10$或$\dfrac{40}{3}$
|
||
|
||
041069
|
||
$\sqrt{3}$
|
||
|
||
041070
|
||
$ab$
|
||
|
||
041071
|
||
(1)$\dfrac{x^2}{4}+y^2=1$\\
|
||
(2)$x=-\dfrac65$或$x-y+\dfrac65=0$
|
||
|
||
041072
|
||
(1)$a=1,b=2\sqrt{2}$\\
|
||
(2)略
|
||
|
||
024284
|
||
$\dfrac{2\pi}{3}$
|
||
|
||
041163
|
||
$y=1$
|
||
|
||
024327
|
||
$2$
|
||
|
||
041164
|
||
$AB//\alpha$或$AB\subset \alpha$
|
||
|
||
019492
|
||
$40$
|
||
|
||
041165
|
||
$\dfrac{\sqrt{5}}{5}$
|
||
|
||
041166
|
||
$\dfrac{3}{2015}$
|
||
|
||
041167
|
||
(1)略\\(2)$\arcsin{\dfrac{\sqrt{10}}5}$\\(3)$\dfrac{\sqrt{3}}{3}$
|
||
|
||
041179
|
||
$\sqrt{2}$
|
||
|
||
041180
|
||
$-1$
|
||
|
||
003767
|
||
$50$
|
||
|
||
013219
|
||
$14.37$
|
||
|
||
041181
|
||
$\dfrac43$
|
||
|
||
041182
|
||
$2^n-1$
|
||
|
||
041183
|
||
$x=-2$
|
||
|
||
041184
|
||
$\dfrac{10}{21}$
|
||
|
||
041185
|
||
$3\sqrt{2}$
|
||
|
||
041186
|
||
$2019$
|
||
|
||
032153
|
||
B
|
||
|
||
019628
|
||
B
|
||
|
||
041187
|
||
D
|
||
|
||
041188
|
||
B
|
||
|
||
013195
|
||
(1)略\\(2)$\dfrac12$\\(3)$2$
|
||
|
||
041189
|
||
(1)公比为$2$\\(2)$15$
|
||
|
||
041190
|
||
(1)$x^2-y^2+2y=0(y>0)$\\(2)$x-2y+3=0$,面积最小值为$3$\\(3)$(2\sqrt{2},4\sqrt{2}]$
|
||
|
||
041210
|
||
$1$
|
||
|
||
041211
|
||
$e^x+xe^x$
|
||
|
||
041212
|
||
$0$
|
||
|
||
041213
|
||
$\sqrt12$
|
||
|
||
041214
|
||
A
|
||
|
||
041215
|
||
C
|
||
|
||
041216
|
||
(1)$y=2x$\\(2)$y=-x+2$
|
||
|
||
041217
|
||
(1)$a=2,b=1$\\(2)投资$3$万元A商品,$2$万元B商品
|
||
|
||
041218
|
||
(1)$-\dfrac{11}{8}-\ln{4}$\\(2)$0<a<1$
|
||
|
||
041219
|
||
$(0,1)$
|
||
|
||
041220
|
||
$y=\pm2x$
|
||
|
||
041221
|
||
$\dfrac{\sqrt{5}}{5}$
|
||
|
||
041222
|
||
$\dfrac{9}{10}$
|
||
|
||
041223
|
||
$(x-1)^2+(y-1)^2=2$
|
||
|
||
041224
|
||
$\dfrac{3}{8}$
|
||
|
||
041225
|
||
$19.2$
|
||
|
||
041226
|
||
$\arccos{\dfrac{\sqrt{3}}{3}}$
|
||
|
||
041227
|
||
$(-\dfrac{\sqrt{10}}{10},0)\cup (0,\dfrac{\sqrt{10}}{10})$
|
||
|
||
001754
|
||
B
|
||
|
||
041228
|
||
A
|
||
|
||
041229
|
||
(1)$a_n=-2n+10$\\(2)$n\leq4$时,$T_n=-n^2+9n$;$n\geq5$时,$T_n=n^2-9n+40$
|
||
|
||
041230
|
||
(1)略\\(2)$\pi-\arccos{\dfrac{\sqrt{6}}{3}}$\\(3)$\sqrt{5}-1$
|
||
|
||
014022
|
||
(1)$1$\\(2)略\\(3)$B(-\dfrac32,\dfrac12)$
|
||
|
||
041142
|
||
$\frac{4}{5}$
|
||
|
||
041143
|
||
$-2$或$-3$
|
||
|
||
041144
|
||
(1)$a_n=22-2n,(n \in \mathbf{N}, n\ge 1)$;(2)$T_n=2^n-n^2+21n-1$
|
||
|
||
041145
|
||
(1)略;(2)最大项为$a_4=3$,最小项为$a_3=-1$
|
||
|
||
041146
|
||
(1)略;(2)$1$
|
||
|
||
041147
|
||
$2$
|
||
|
||
041148
|
||
$\dfrac{y^2}{12}+\dfrac{x^2}{3}=1$
|
||
|
||
041149
|
||
$2\sqrt{6}$
|
||
|
||
041150
|
||
$\pi$
|
||
|
||
041151
|
||
$\frac{\sqrt{6}}{2}$
|
||
|
||
041152
|
||
$[-\sqrt{2},\sqrt{2})\cup\{2\}$
|
||
|
||
041153
|
||
$\textcircled{3},\textcircled{4}$
|
||
|
||
041154
|
||
$2$
|
||
|
||
041155
|
||
D
|
||
|
||
031075
|
||
D
|
||
|
||
041156
|
||
$\pm\sqrt{2}$
|
||
|
||
041157
|
||
$7+\sqrt{29}$
|
||
|
||
041158
|
||
$0.25$
|
||
|
||
023585
|
||
$58$
|
||
|
||
041159
|
||
C
|
||
|
||
041160
|
||
(1)$\dfrac{x^2}{3}-y^2=1$;(2)$[\frac{16\sqrt{3}}{3},+\infty)$
|
||
|
||
041161
|
||
(1)$0.8$;(2)$(-1.2,0)$
|
||
|
||
041162
|
||
(1)$2$;(2)$(-\infty,-5]$;(3)不存在
|
||
|
||
032157
|
||
(1)$A(1,2)$;(2)$\frac{12\sqrt{5}}{5}$;(3)$\frac{10}{7}$
|
||
|
||
041169
|
||
$-\frac{1}{1+\Delta x}$
|
||
|
||
041172
|
||
\textcircled{2}
|
||
|
||
041195
|
||
$29$
|
||
|
||
041196
|
||
$27$
|
||
|
||
041198
|
||
$1$
|
||
|
||
041199
|
||
$(-\infty,1]$
|
||
|
||
041200
|
||
$(-\infty,-\frac{7}{2}]$
|
||
|
||
041201
|
||
$(-\infty,-\frac{\sqrt{6}}{2}]\cup[1,+\infty)$
|
||
|
||
041202
|
||
(1)略;(2)$\frac{2\sqrt{3}}{3}$
|
||
|
||
041203
|
||
(1)$b=2.5$;(2)$\frac{5}{2}a^2-3a^2lna$
|
||
|
||
041204
|
||
(1)$\frac{3}{20}$;(2)$\frac{19}{140}$;(3)$s_2^2<s_3^2<s_1^2$
|
||
|
||
041205
|
||
(1)$4\sqrt{2}$;(2)$(0,\sqrt{2}]$;(3)$\frac{1}{3}$
|
||
|
||
041206
|
||
(1)$\frac{e}{2}$;(2) 任意 $a>0$, $b>0$
|
||
能使函数 $f(x)$ 与 $g(x)$ 在区间 $(0,+\infty)$ 内存在``$\mathrm{S}$ 点''
|
||
|
||
041207
|
||
(1)$y=\frac{4}{3}x-\frac{8}{3}+ln3$;(2)当$a\leq0$时,严曾区间为$(\sqrt{1-a},+\infty)$;当$0<a<1$时,严曾区间为$(-1,-\sqrt{1-a})$和$(\sqrt{1-a},+\infty)$;当$a\geq1$时,严曾区间为$(-1,+\infty)$;(3)不存在
|
||
|
||
041208
|
||
(1)$a_1=-1,a_2=1,a_3=3,a_4=5,a_n=2n-3(n \in N^*)$;(2)略.
|
||
|
||
041209
|
||
(1) $\dfrac{x^2}{4}+y^2=1$;(2)$(x-\frac{\sqrt{2}}{5})^2+(y+\frac{\sqrt{2}}{5})^2=\frac{153}{50}$;(3)最大值为$\frac{16\sqrt{13}}{13}$,$l_1:y=\pm\frac{\sqrt{10}}{2}x-1$
|
||
|
||
ans
|
||
|
||
041065
|
||
$1$
|
||
|
||
041066
|
||
$\sqrt{5}$
|
||
|
||
041067
|
||
$\dfrac{x^2}{25}+\dfrac{y^2}{16}=1$
|
||
|
||
041068
|
||
$10$或$\dfrac{40}{3}$
|
||
|
||
041069
|
||
$\sqrt{3}$
|
||
|
||
041070
|
||
$ab$
|
||
|
||
041071
|
||
(1)$\dfrac{x^2}{4}+y^2=1$\\
|
||
(2)$x=-\dfrac65$或$x-y+\dfrac65=0$
|
||
|
||
041072
|
||
(1)$a=1,b=2\sqrt{2}$\\
|
||
(2)略
|
||
|
||
024284
|
||
$\dfrac{2\pi}{3}$
|
||
|
||
041163
|
||
$y=1$
|
||
|
||
024327
|
||
$2$
|
||
|
||
041164
|
||
$AB//\alpha$或$AB\subset \alpha$
|
||
|
||
019492
|
||
$40$
|
||
|
||
041165
|
||
$\dfrac{\sqrt{5}}{5}$
|
||
|
||
041166
|
||
$\dfrac{3}{2015}$
|
||
|
||
041167
|
||
(1)略\\(2)$\arcsin{\dfrac{\sqrt{10}}5}$\\(3)$\dfrac{\sqrt{3}}{3}$
|
||
|
||
041179
|
||
$\sqrt{2}$
|
||
|
||
041180
|
||
$-1$
|
||
|
||
003767
|
||
$50$
|
||
|
||
013219
|
||
$14.37$
|
||
|
||
041181
|
||
$\dfrac43$
|
||
|
||
041182
|
||
$2^n-1$
|
||
|
||
041183
|
||
$x=-2$
|
||
|
||
041184
|
||
$\dfrac{10}{21}$
|
||
|
||
041185
|
||
$3\sqrt{2}$
|
||
|
||
041186
|
||
$2019$
|
||
|
||
032153
|
||
B
|
||
|
||
019628
|
||
B
|
||
|
||
041187
|
||
D
|
||
|
||
041188
|
||
B
|
||
|
||
013195
|
||
(1)略\\(2)$\dfrac12$\\(3)$2$
|
||
|
||
041189
|
||
(1)公比为$2$\\(2)$15$
|
||
|
||
041190
|
||
(1)$x^2-y^2+2y=0(y>0)$\\(2)$x-2y+3=0$,面积最小值为$3$\\(3)$(2\sqrt{2},4\sqrt{2}]$
|
||
|
||
041210
|
||
$1$
|
||
|
||
041211
|
||
$e^x+xe^x$
|
||
|
||
041212
|
||
$0$
|
||
|
||
041213
|
||
$\sqrt12$
|
||
|
||
041214
|
||
A
|
||
|
||
041215
|
||
C
|
||
|
||
041216
|
||
(1)$y=2x$\\(2)$y=-x+2$
|
||
|
||
041217
|
||
(1)$a=2,b=1$\\(2)投资$3$万元A商品,$2$万元B商品
|
||
|
||
041218
|
||
(1)$-\dfrac{11}{8}-\ln{4}$\\(2)$0<a<1$
|
||
|
||
041219
|
||
$(0,1)$
|
||
|
||
041220
|
||
$y=\pm2x$
|
||
|
||
041221
|
||
$\dfrac{\sqrt{5}}{5}$
|
||
|
||
041222
|
||
$\dfrac{9}{10}$
|
||
|
||
041223
|
||
$(x-1)^2+(y-1)^2=2$
|
||
|
||
041224
|
||
$\dfrac{3}{8}$
|
||
|
||
041225
|
||
$19.2$
|
||
|
||
041226
|
||
$\arccos{\dfrac{\sqrt{3}}{3}}$
|
||
|
||
041227
|
||
$(-\dfrac{\sqrt{10}}{10},0)\cup (0,\dfrac{\sqrt{10}}{10})$
|
||
|
||
001754
|
||
B
|
||
|
||
041228
|
||
A
|
||
|
||
041229
|
||
(1)$a_n=-2n+10$\\(2)$n\leq4$时,$T_n=-n^2+9n$;$n\geq5$时,$T_n=n^2-9n+40$
|
||
|
||
041230
|
||
(1)略\\(2)$\pi-\arccos{\dfrac{\sqrt{6}}{3}}$\\(3)$\sqrt{5}-1$
|
||
|
||
014022
|
||
(1)$1$\\(2)略\\(3)$B(-\dfrac32,\dfrac12)$
|
||
|
||
041142
|
||
$\frac{4}{5}$
|
||
|
||
041143
|
||
$-2$或$-3$
|
||
|
||
041144
|
||
(1)$a_n=22-2n,(n \in \mathbf{N}, n\ge 1)$;(2)$T_n=2^n-n^2+21n-1$
|
||
|
||
041145
|
||
(1)略;(2)最大项为$a_4=3$,最小项为$a_3=-1$
|
||
|
||
041146
|
||
(1)略;(2)$1$
|
||
|
||
041147
|
||
$2$
|
||
|
||
041148
|
||
$\dfrac{y^2}{12}+\dfrac{x^2}{3}=1$
|
||
|
||
041149
|
||
$2\sqrt{6}$
|
||
|
||
041150
|
||
$\pi$
|
||
|
||
041151
|
||
$\frac{\sqrt{6}}{2}$
|
||
|
||
041152
|
||
$[-\sqrt{2},\sqrt{2})\cup\{2\}$
|
||
|
||
041153
|
||
\textcircled{3},\textcircled{4}
|
||
|
||
041154
|
||
$2$
|
||
|
||
041155
|
||
D
|
||
|
||
031075
|
||
D
|
||
|
||
041156
|
||
$\pm\sqrt{2}$
|
||
|
||
041157
|
||
$7+\sqrt{29}$
|
||
|
||
041158
|
||
$0.25$
|
||
|
||
023585
|
||
$58$
|
||
|
||
041159
|
||
C
|
||
|
||
041160
|
||
(1)$\dfrac{x^2}{3}-y^2=1$;(2)$[\frac{16\sqrt{3}}{3},+\infty)$
|
||
|
||
041161
|
||
(1)$0.8$;(2)$(-1.2,0)$
|
||
|
||
041162
|
||
(1)$2$;(2)$(-\infty,-5]$;(3)不存在
|
||
|
||
032157
|
||
(1)$A(1,2)$;(2)$\frac{12\sqrt{5}}{5}$;(3)$\frac{10}{7}$
|
||
|
||
041169
|
||
$-\frac{1}{1+\Delta x}$
|
||
|
||
041172
|
||
\textcircled{2}
|
||
|
||
041195
|
||
$29$
|
||
|
||
041196
|
||
$27$
|
||
|
||
041198
|
||
$1$
|
||
|
||
041199
|
||
$(-\infty,1]$
|
||
|
||
041200
|
||
$(-\infty,-\frac{7}{2}]$
|
||
|
||
041201
|
||
$(-\infty,-\frac{\sqrt{6}}{2}]\cup[1,+\infty)$
|
||
|
||
041202
|
||
(1)略;(2)$\frac{2\sqrt{3}}{3}$
|
||
|
||
041203
|
||
(1)$b=2.5$;(2)$\frac{5}{2}a^2-3a^2lna$
|
||
|
||
041204
|
||
(1)$\frac{3}{20}$;(2)$\frac{19}{140}$;(3)$s_2^2<s_3^2<s_1^2$
|
||
|
||
041205
|
||
(1)$4\sqrt{2}$;(2)$(0,\sqrt{2}]$;(3)$\frac{1}{3}$
|
||
|
||
041206
|
||
(1)$\frac{e}{2}$;(2) 任意 $a>0$, $b>0$
|
||
能使函数 $f(x)$ 与 $g(x)$ 在区间 $(0,+\infty)$ 内存在``$\mathrm{S}$ 点''
|
||
|
||
041207
|
||
(1)$y=\frac{4}{3}x-\frac{8}{3}+ln3$;(2)当$a\leq0$时,严曾区间为$(\sqrt{1-a},+\infty)$;当$0<a<1$时,严曾区间为$(-1,-\sqrt{1-a})$和$(\sqrt{1-a},+\infty)$;当$a\geq1$时,严曾区间为$(-1,+\infty)$;(3)不存在
|
||
|
||
041208
|
||
(1)$a_1=-1,a_2=1,a_3=3,a_4=5,a_n=2n-3(n \in N^*)$;(2)略.
|
||
|
||
041209
|
||
(1) $\dfrac{x^2}{4}+y^2=1$;(2)$(x-\frac{\sqrt{2}}{5})^2+(y+\frac{\sqrt{2}}{5})^2=\frac{153}{50}$;(3)最大值为$\frac{16\sqrt{13}}{13}$,$l_1:y=\pm\frac{\sqrt{10}}{2}x-1$
|
||
|
||
ans
|
||
|
||
024861
|
||
$y=3x-2$
|
||
|
||
024862
|
||
$2+\sqrt{2}$
|
||
|
||
024863
|
||
$-\dfrac{1}{4}+\ln 2$
|
||
|
||
015841
|
||
$[\dfrac{\pi}{3},\pi)$
|
||
|
||
024164
|
||
$[-\dfrac{1}{3},1]\cup [2,3)$
|
||
|
||
015818
|
||
$\dfrac{1}{4}$
|
||
|
||
015850
|
||
$[0,+\infty)$
|
||
|
||
024864
|
||
\textcircled{2}\textcircled{3}
|
||
|
||
019096
|
||
最大值是$8$, 最小值是$-8$
|
||
|
||
019097
|
||
最大值是$8$, 最小值是$\dfrac{4}{3}$
|
||
|
||
009923
|
||
$[-4,0]$
|
||
|
||
009924
|
||
最大值为$2$; 最小值为$0$
|
||
|