707 lines
9.1 KiB
Plaintext
707 lines
9.1 KiB
Plaintext
ans
|
||
|
||
024871
|
||
B
|
||
|
||
024872
|
||
A
|
||
|
||
024873
|
||
D
|
||
|
||
024874
|
||
$[\dfrac{1}{2},1]$
|
||
|
||
024875
|
||
$[-1,0)\cup (3,4)$
|
||
|
||
024876
|
||
$\{(2,3)\}$
|
||
|
||
024877
|
||
D
|
||
|
||
024878
|
||
A
|
||
|
||
024879
|
||
D
|
||
|
||
024880
|
||
$3$
|
||
|
||
024881
|
||
$a\le \dfrac{1}{3}$
|
||
|
||
024882
|
||
$a\ge \dfrac{1}{5}$
|
||
|
||
024883
|
||
$\{a_2,a_4\}$, $\{a_1,a_2,a_4\}$, $\{a_2,a_3,a_4\}$, $\{a_1,a_2,a_3,a_4\}$
|
||
|
||
024884
|
||
$\{0,1\}$
|
||
|
||
024885
|
||
$(-\infty,-1]\cup \{1\}$
|
||
|
||
024886
|
||
\textcircled{4}
|
||
|
||
024887
|
||
B
|
||
|
||
024888
|
||
C
|
||
|
||
024889
|
||
充分非必要条件, 理由略
|
||
|
||
024890
|
||
(1) 证明略; (2) 证明略
|
||
|
||
024891
|
||
(1) $(1,+\infty)$; (2) $[-3,1]$
|
||
|
||
024892
|
||
$-3b^2$
|
||
|
||
024893
|
||
$1.82$
|
||
|
||
024894
|
||
$3$或$\dfrac{1}{3}$
|
||
|
||
024895
|
||
$(1,5)$
|
||
|
||
024896
|
||
$-1$
|
||
|
||
024897
|
||
$(-\infty,2]$
|
||
|
||
024898
|
||
$\dfrac{5}{2}$
|
||
|
||
024899
|
||
$2$
|
||
|
||
024900
|
||
$(2,5)$
|
||
|
||
024901
|
||
$3$
|
||
|
||
024902
|
||
C
|
||
|
||
024903
|
||
$[-6,1]$
|
||
|
||
024904
|
||
(1) $f(x)=\begin{cases}
|
||
\log_2 \dfrac{1}{x}, & x>0, \\ 0, & x=0, \\ -\log_2(-\dfrac{1}{x}), & x<0;
|
||
\end{cases}$ (2) 解集为$(-\log_2 3,+\infty)$
|
||
|
||
024905
|
||
(1) $(-\infty,-1]\cup [3,+\infty)$; (2) $(-\infty,3]$
|
||
|
||
024906
|
||
(1) $(-\infty,-\dfrac{3}{4}]$; (2) $\sqrt{3}$
|
||
|
||
024907
|
||
$-\dfrac{27}{19}$
|
||
|
||
024908
|
||
B
|
||
|
||
024909
|
||
$(1,\dfrac{3}{2}]$
|
||
|
||
024910
|
||
(1) $y=\begin{cases}
|
||
4t, & 0\le t<1, \\ (\dfrac{1}{2})^{t-3}, & t\ge 1;
|
||
\end{cases}$ (2) $\dfrac{79}{16}$
|
||
|
||
024911
|
||
$[\dfrac{1}{2},\dfrac{7}{2}]$
|
||
|
||
024912
|
||
(1) 证明略; (2) $(1,\dfrac{3}{2}]\cup \{2,3\}$
|
||
|
||
024913
|
||
D
|
||
|
||
024914
|
||
B
|
||
|
||
024915
|
||
C
|
||
|
||
024916
|
||
$\dfrac{1}{100}$
|
||
|
||
024917
|
||
$2$
|
||
|
||
024918
|
||
C
|
||
|
||
024919
|
||
A
|
||
|
||
024920
|
||
D
|
||
|
||
024921
|
||
C
|
||
|
||
024922
|
||
$(0,1]$
|
||
|
||
024923
|
||
$5$
|
||
|
||
024924
|
||
B
|
||
|
||
024925
|
||
$(-\infty,2]$
|
||
|
||
024926
|
||
(1) \begin{tikzpicture}[>=latex, scale = 0.6]
|
||
\draw [->] (-4,0) -- (4,0) node [below] {$x$};
|
||
\draw [->] (0,-5) -- (0,5) node [left] {$y$};
|
||
\draw (0,0) node [above left] {$O$};
|
||
\draw (-2,0) node [below left] {$-2$} (2,0) node [below right] {$2$} (0,-2) node [above right] {$-2$} (0,2) node [below right] {$2$} (0,4) node [below right] {$4$};
|
||
\foreach \i in {-5,-4,-3,-2,-1,1,2,3,4,5}
|
||
{\draw [dashed] (-4,\i) -- (4,\i);};
|
||
\foreach \i in {-4,-3,-2,-1,1,2,3,4}
|
||
{\draw [dashed] (\i,-5) -- (\i,5);};
|
||
\draw [domain = {-1-sqrt(6)}:0, samples = 100] plot (\x,{\x*(\x+2)});
|
||
\draw [domain = 0:{1+sqrt(6)}, samples = 100] plot (\x,{-\x*(\x-2)});
|
||
\end{tikzpicture} (2) $f(x)=-x^2+2x$($x>0$); (3) $(-1,1)$
|
||
|
||
024927
|
||
$(1,+\infty)$
|
||
|
||
024928
|
||
C
|
||
|
||
024929
|
||
C
|
||
|
||
024930
|
||
$-4$; $8$
|
||
|
||
024931
|
||
(1) $k=1$; (2) $Q(x)=125-|x-25|$($1\le x\le 30$, $x\in \mathbf{N}$); (3) $121$
|
||
|
||
024932
|
||
$(\dfrac{1}{3},-\dfrac{29}{27})$
|
||
|
||
024933
|
||
$0$; $(0,2)$
|
||
|
||
025063
|
||
B
|
||
|
||
025064
|
||
$\dfrac{2\sqrt{2}}{3}$
|
||
|
||
025065
|
||
$5$
|
||
|
||
025066
|
||
$-\dfrac{23}{16}$
|
||
|
||
025067
|
||
C
|
||
|
||
025068
|
||
B
|
||
|
||
025069
|
||
$-\dfrac{60}{169}$; $-\dfrac{12}{5}$
|
||
|
||
025070
|
||
$\dfrac{1}{3}$
|
||
|
||
025071
|
||
$\dfrac{7}{25}$
|
||
|
||
025072
|
||
B
|
||
|
||
025073
|
||
A
|
||
|
||
025074
|
||
D
|
||
|
||
025075
|
||
存在, $\alpha=\dfrac{\pi}{4}$, $\beta=\dfrac{\pi}{6}$
|
||
|
||
013851
|
||
(1) $28.28$米; (2) $26.93$米
|
||
|
||
025076
|
||
\textcircled{1}\textcircled{3}
|
||
|
||
025077
|
||
\textcircled{1}\textcircled{2}\textcircled{4}
|
||
|
||
025078
|
||
若选择\textcircled{1}, $a=8$, $b=3$; 若选择\textcircled{2}, $a=6$, $b=5$
|
||
|
||
025079
|
||
$2+\dfrac{3\sqrt{2}}{2}$
|
||
|
||
025080
|
||
C
|
||
|
||
025081
|
||
(1) $\sqrt{6}+\sqrt{2}$; (2) 证明略; (3) 当$a>2R$或$a=b=2R$时, $\triangle ABC$不存在; 当$b<a=2R$时, $\triangle ABC$有且仅有一个, $c=\sqrt{a^2-b^2}$; 当$b=a<2R$时, $\triangle ABC$有且仅有一个, $c=\dfrac{a}{R}\sqrt{4R^2-a^2}$; 当$b<a<2R$时, $\triangle ABC$有且仅有两个, $c=\sqrt{a^2+b^2\pm \dfrac{ab}{2R^2}(\sqrt{4R^2-a^2}\cdot \sqrt{4R^2-b^2}-ab)}$
|
||
|
||
024934
|
||
B
|
||
|
||
024935
|
||
D
|
||
|
||
024936
|
||
C
|
||
|
||
024937
|
||
B
|
||
|
||
024938
|
||
B
|
||
|
||
024939
|
||
$\dfrac{\sqrt{3}}{3}$
|
||
|
||
024940
|
||
$\dfrac{5\pi}{6}$
|
||
|
||
024941
|
||
C
|
||
|
||
024942
|
||
D
|
||
|
||
024943
|
||
B
|
||
|
||
024944
|
||
\textcircled{1}\textcircled{2}
|
||
|
||
024945
|
||
$\dfrac{\pi}{2}$
|
||
|
||
024946
|
||
(1) $\dfrac{\pi}{2}$; (2) 最大值为$3$, 当且仅当$x=\dfrac{\pi}{6}$时取到最大值; 最小值为$0$, 当且仅当$x=-\dfrac{\pi}{6}$时取到最小值
|
||
|
||
024947
|
||
(1) $[-\dfrac{\pi}{6},\dfrac{\pi}{3}]$和$[\dfrac{5\pi}{6},\pi]$; (2) 当$-2<a<-1$时, 方程无根; 当$-1<a\le 0$时, 方程有三个根; 当$a=-1$或$0<a<1$时, 方程有两个根
|
||
|
||
024948
|
||
(1) $[k\pi,k\pi+\dfrac{\pi}{2}]$, $k\in \mathbf{Z}$; (2) $-\dfrac{\sqrt{3}}{4}$
|
||
|
||
024949
|
||
\textcircled{2}\textcircled{3}\textcircled{4}
|
||
|
||
024950
|
||
D
|
||
|
||
024951
|
||
B
|
||
|
||
024952
|
||
(1) $\theta=\dfrac{\pi}{6}$, $\omega = 2$; (2) $x_0=\dfrac{2\pi}{3}$或$\dfrac{3\pi}{4}$
|
||
|
||
|
||
024953
|
||
(1) 存在$a=1$满足条件\textcircled{2}\textcircled{3}; (2) $(\dfrac{3\pi}{8},\dfrac{7\pi}{8}]$
|
||
|
||
024954
|
||
D
|
||
|
||
024955
|
||
D
|
||
|
||
024956
|
||
\textcircled{1}\textcircled{3}\textcircled{4}
|
||
|
||
024957
|
||
$\overrightarrow{AB}$
|
||
|
||
024958
|
||
$-\dfrac{5}{2}$
|
||
|
||
024959
|
||
$\dfrac{2\pi}{3}$
|
||
|
||
024960
|
||
C
|
||
|
||
024961
|
||
C
|
||
|
||
024962
|
||
D
|
||
|
||
024963
|
||
A
|
||
|
||
024964
|
||
B
|
||
|
||
024965
|
||
\begin{tikzpicture}[>=latex]
|
||
\draw (0,0) node [below right] {$A$} coordinate (A);
|
||
\draw (-1,0) node [below] {$B$} coordinate (B);
|
||
\draw (B) ++ (130:2) node [above] {$C$} coordinate (C);
|
||
\draw (C) ++ (1,0) node [above] {$D$} coordinate (D);
|
||
\draw (-2,0) node [below] {西} coordinate (l) -- (-1,0);
|
||
\draw [->] (0,0) -- (1,0) node [below] {东};
|
||
\draw [->] (0,-1) node [right] {南} -- (0,2) node [right] {北};
|
||
\draw (B) pic [draw, "$50^\circ$", scale = 0.5, angle eccentricity = 2.5] {angle = C--B--l};
|
||
\draw [->] (A)--(B);
|
||
\draw [->] (B)--(C);
|
||
\draw [->] (C)--(D);
|
||
\draw [->] (A)--(D);
|
||
\end{tikzpicture}
|
||
|
||
024966
|
||
(1) $\dfrac{1}{3}$; (2) $(-\dfrac{1}{2},\dfrac{1}{2})$
|
||
|
||
024967
|
||
(1) $(\sqrt{10},-2\sqrt{2})$或$(-\sqrt{10},2\sqrt{2})$; (2) $\dfrac{39}{8}$
|
||
|
||
024968
|
||
$14$; $10$
|
||
|
||
024969
|
||
$\dfrac{4}{3}$
|
||
|
||
024970
|
||
A
|
||
|
||
024971
|
||
(1) $\sqrt{3}$, $\dfrac{\sqrt{7}}{2}$; (2) 是定值$\dfrac{7}{8}$
|
||
|
||
032864
|
||
$\sqrt{7}$
|
||
|
||
024972
|
||
A
|
||
|
||
024973
|
||
D
|
||
|
||
024974
|
||
B
|
||
|
||
024975
|
||
D
|
||
|
||
024976
|
||
C
|
||
|
||
024977
|
||
B
|
||
|
||
024978
|
||
\textcircled{1}\textcircled{4}
|
||
|
||
024979
|
||
$\sqrt{2}$
|
||
|
||
024980
|
||
$-1$
|
||
|
||
024981
|
||
$\pm 4$
|
||
|
||
024982
|
||
B
|
||
|
||
024983
|
||
$5\sqrt{2}$; 一
|
||
|
||
024984
|
||
(1) $\dfrac{1}{2}$; (2) $(-\infty,-\dfrac{3}{2})$
|
||
|
||
024985
|
||
$-\dfrac{5}{3}$或$\dfrac{\sqrt{14}}{2}$
|
||
|
||
040763
|
||
$(x+y)(x-y)(x+y\mathrm{i})(x-y\mathrm{i})$
|
||
|
||
040764
|
||
$\dfrac{1}{12}$
|
||
|
||
024986
|
||
\textcircled{4}
|
||
|
||
024987
|
||
$\dfrac{3}{5}$或$\dfrac{5}{3}$或$-1$
|
||
|
||
024988
|
||
A
|
||
|
||
024989
|
||
$(-\infty,2-2\sqrt{2})\cup (2+\sqrt{2},+\infty)$
|
||
|
||
024990
|
||
$-10102$
|
||
|
||
024991
|
||
$(\dfrac{5}{4},\dfrac{10}{7}]$
|
||
|
||
024992
|
||
$-360$
|
||
|
||
024993
|
||
$68$
|
||
|
||
024994
|
||
$\begin{cases}
|
||
6n-1, & n\ge 2,\\ 6, & n=1
|
||
\end{cases}$
|
||
|
||
024995
|
||
$16$
|
||
|
||
024996
|
||
D
|
||
|
||
024997
|
||
$7$
|
||
|
||
024998
|
||
$\dfrac{3}{4}(9^n-1)$
|
||
|
||
024999
|
||
$\dfrac{4}{3}$
|
||
|
||
025000
|
||
$3^n-2$
|
||
|
||
025001
|
||
$-\dfrac{1}{2021}$
|
||
|
||
025002
|
||
(1) $a_n=\begin{cases}
|
||
\dfrac{1}{2}, & n=1, \\ 4, & n\ge 2;
|
||
\end{cases}$ (2) $T_n=2^{\frac{n(n-1)}{2}}$($n\in \mathbf{N}$, $n\ge 1$)
|
||
|
||
025003
|
||
有最大项, 最大项为$\dfrac{10^{10}}{11^9}$, 序数为$9$或$10$
|
||
|
||
025004
|
||
证明略
|
||
|
||
025005
|
||
B
|
||
|
||
025006
|
||
D
|
||
|
||
025007
|
||
(1) 证明略; (2) $(-\infty,-\dfrac{1}{3}]\cup [3,+\infty)$
|
||
|
||
025008
|
||
D
|
||
|
||
025009
|
||
$(-2,4)$
|
||
|
||
025010
|
||
$-6$
|
||
|
||
025011
|
||
$4$
|
||
|
||
025012
|
||
$\dfrac{1}{2}$
|
||
|
||
025013
|
||
$-\dfrac{\sqrt{3}}{3}$
|
||
|
||
025014
|
||
$2$
|
||
|
||
025015
|
||
$y=x-2$
|
||
|
||
025016
|
||
$4$
|
||
|
||
025017
|
||
$\dfrac{7\sqrt[8]{x^7}}{8x}$, $2\cos 2x$, $\dfrac{\mathrm{e}^x(x-1)}{x^2}$, $-\dfrac{1}{\sin^2 x}$, $\dfrac{2}{2x+1}-\mathrm{e}^{-x}(\cos 2x+2\sin 2x)$
|
||
|
||
025018
|
||
$-1$
|
||
|
||
025019
|
||
$[3,+\infty)$
|
||
|
||
025020
|
||
$(-\infty,0]\cup [3,+\infty)$
|
||
|
||
025021
|
||
$(-\dfrac{4}{3},\dfrac{28}{3})$
|
||
|
||
025022
|
||
$7.2$元, $20\mathrm{km}/\mathrm{h}$
|
||
|
||
025023
|
||
(1) $y=-4x+5$; (2) 在$(-\infty,-1]$和$[4,+\infty)$上严格增, 在$[-1,4]$上严格减, 最大值为$1$, 最小值为$-\dfrac{1}{4}$
|
||
|
||
025024
|
||
\textcircled{2}\textcircled{3}\textcircled{4}
|
||
|
||
025025
|
||
(1) $f'(x)=a\mathrm{e}^x\ln x+\dfrac{a\mathrm{e}^x}{x}+\dfrac{b\mathrm{e}^{x-1}x-b\mathrm{e}^{x-1}}{x^2}$; (2) $a=1$, $b=2$
|
||
|
||
025026
|
||
$1$
|
||
|
||
025027
|
||
$(-10,-2)$
|
||
|
||
025028
|
||
D
|
||
|
||
025029
|
||
(1) 最小值为$-\dfrac{1}{\mathrm{e}}$, 最大值为$0$; (2) $[1,+\infty)$
|
||
|
||
025030
|
||
$1$
|
||
|
||
025031
|
||
$\dfrac{1}{2}$
|
||
|
||
025032
|
||
$-\sqrt{3}$
|
||
|
||
025033
|
||
$[\dfrac{\pi}{12},\dfrac{\pi}{2}]$
|
||
|
||
025034
|
||
$2-\ln 2$
|
||
|
||
025035
|
||
$-6$
|
||
|
||
025036
|
||
$2$
|
||
|
||
025037
|
||
$\sqrt{3}$
|
||
|
||
025038
|
||
$\dfrac{\pi}{3}$
|
||
|
||
025039
|
||
C
|
||
|
||
025040
|
||
A
|
||
|
||
025041
|
||
B
|
||
|
||
025042
|
||
(1) $m=-4$, $n=5$; (2) $2\sqrt{3}$
|
||
|
||
025043
|
||
(1) $\pi-\arccos\dfrac{7\sqrt{19}}{38}$; (2) $(-\infty,-6)\cup (-6,\dfrac{7}{2})$
|
||
|
||
025044
|
||
(1) $AC=100\sqrt{7}$米, 原花园建筑用地$ABCD$的面积为$20000\sqrt{3}$平方米; (2) 当$\triangle ACP$为正三角形时, 新建筑用地面积最大, 最大值为$22500\sqrt{3}$平方米
|
||
|
||
019882
|
||
(1) $2$; (2) 定值为$6$, 证明略; (3) 存在, 最小值为$-2$
|
||
|
||
025045
|
||
(1) 极小值为$2-2\ln 2$, 无极大值; (2) 当$-2<a<0$时, 在$(0,\dfrac{1}{2}]$和$[-\dfrac{1}{a},+\infty)$上严格减, 在$[\dfrac{1}{2},-\dfrac{1}{a}]$上严格增; 当$a=-2$时, 在$(0,+\infty)$上严格减; 当$a<-2$时, 在$(0,-\dfrac{1}{a}]$和$[\dfrac{1}{2},+\infty)$上严格减, 在$[-\dfrac{1}{a},\dfrac{1}{2}]$上严格增; (3) $(-\infty,-\dfrac{13}{3}]$
|
||
|
||
025046
|
||
$\dfrac{\pi}{6}$
|
||
|
||
025047
|
||
$y=-x^{-2}$
|
||
|
||
025048
|
||
$-\dfrac{2\sqrt{6}}{5}$
|
||
|
||
011606
|
||
$2\sqrt{6}$
|
||
|
||
025049
|
||
$15$
|
||
|
||
025050
|
||
$y=-x+2$
|
||
|
||
025051
|
||
$\pi-\arccos\dfrac{1}{6}$
|
||
|
||
025052
|
||
$-2$
|
||
|
||
025053
|
||
\textcircled{1}
|
||
|
||
025054
|
||
$(-\dfrac{1}{\mathrm{e}},-0.02\ln 10)$
|
||
|
||
025055
|
||
$\dfrac{\sqrt{15}}{2}$
|
||
|
||
025056
|
||
C
|
||
|
||
025057
|
||
B
|
||
|
||
025058
|
||
A
|
||
|
||
014338
|
||
$(39,13)$
|
||
|
||
025059
|
||
(1) $f(x)=2\sin (2x+\dfrac{\pi}{3})$, 最小正周期为$\pi$; (2) $[-1,2]$
|
||
|
||
025060
|
||
(1) $\dfrac{100}{9}$; (2) $\dfrac{100}{7}$
|
||
|
||
025061
|
||
(1) $(0,\dfrac{1}{2}]$和$[2,+\infty)$; (2) $(-\infty,0)\cup \{1\}$; (3) 当$a=1$时, $f(x)$在$(0,+\infty)$上严格增; 当$a\in (0,1)$时, $f(x)$在$(0,a]$和$[\dfrac{1}{a},+\infty)$`上严格增, 在$(a,\dfrac{1}{a})$上严格减
|
||
|
||
025062
|
||
(1) 在$(0,+\infty)$上严格增; (2) $(-\infty,2+\dfrac{3}{\mathrm{e}}]$
|
||
|
||
025082
|
||
$\begin{cases}
|
||
1, & n=1,\\ -3, & n\ge 2
|
||
\end{cases}$
|
||
|
||
025083
|
||
B
|
||
|
||
025084
|
||
C
|
||
|
||
025085
|
||
(1) $\sqrt{26}$; (2) $-\dfrac{8}{13}$
|
||
|
||
025086
|
||
(1) 在$(0,+\infty)$上严格增; (2) $(\dfrac{5}{2},+\infty)$; (3) $[8-5\ln 2,+\infty)$
|
||
|