129 lines
1.4 KiB
Plaintext
129 lines
1.4 KiB
Plaintext
ans
|
|
|
|
012508
|
|
$(-2,0]$
|
|
|
|
012509
|
|
$4$
|
|
|
|
012510
|
|
$36\pi$
|
|
|
|
012511
|
|
$35$
|
|
|
|
012512
|
|
$2$
|
|
|
|
012513
|
|
$3$
|
|
|
|
012514
|
|
$y=3x-1$
|
|
|
|
012515
|
|
$\dfrac 25$
|
|
|
|
012516
|
|
$-1$
|
|
|
|
012517
|
|
$\cos(4x+\dfrac \pi 3)$
|
|
|
|
012518
|
|
$\dfrac{49}{24}\sqrt{6}$
|
|
|
|
012519
|
|
\textcircled{1}\textcircled{4}
|
|
|
|
012520
|
|
A
|
|
|
|
012521
|
|
D
|
|
|
|
012522
|
|
B
|
|
|
|
012523
|
|
C
|
|
|
|
012524
|
|
(1) $\dfrac \pi 3$; (2) 证明略
|
|
|
|
012525
|
|
(1) $a_n=2n$; (2) $6$
|
|
|
|
012526
|
|
(1) 证明略; (2) $\dfrac{2\sqrt{42}}7$; (3) 存在, $|A_1E|=1$
|
|
|
|
012527
|
|
(1) $X\sim \begin{pmatrix} 155 & 165 & 175 & 185 & 195 & 205\\ 0.22 & 0.27 & 0.25 & 0.15 & 0.1 & 0.01\end{pmatrix}$, $E[X]=171.7$; (2) $0.0312$; (3) $27.25$
|
|
|
|
012528
|
|
(1) 在$(-\infty,2-\dfrac{\sqrt{3a}}3]$上是严格增函数, 在$[2-\dfrac{\sqrt{3a}}3,2+\dfrac{\sqrt{3a}}3]$上是严格减函数, 在$[2+\dfrac{\sqrt{3a}}3,+\infty)$上是严格增函数; (2) 是定值$6$; (3) $\{4,12\}$
|
|
|
|
12676
|
|
$(-2,1)$
|
|
|
|
12677
|
|
$4$
|
|
|
|
12678
|
|
$(-\infty,2)$
|
|
|
|
12679
|
|
$80$
|
|
|
|
12680
|
|
$\dfrac\pi 2$
|
|
|
|
12681
|
|
$-7$
|
|
|
|
12682
|
|
$0.36$
|
|
|
|
12683
|
|
$12$
|
|
|
|
12684
|
|
$\dfrac{18}{35}$
|
|
|
|
12685
|
|
$8$
|
|
|
|
12686
|
|
$(-\pi,-\dfrac\pi 2)$和$(0,\dfrac\pi 2)$
|
|
|
|
12687
|
|
$9$
|
|
|
|
12688
|
|
B
|
|
|
|
12689
|
|
D
|
|
|
|
12690
|
|
B
|
|
|
|
12691
|
|
D
|
|
|
|
12692
|
|
(1) $a_n=5-n$; (2) $n=4$或$5$
|
|
|
|
12693
|
|
(1) 证明略; (2) $\dfrac 14$
|
|
|
|
12694
|
|
(1) $247.4$米; (2) $AB=AD=100\sqrt{5}$米, $\angle C=\dfrac\pi 2$
|
|
|
|
12695
|
|
(1) $F_1(-\sqrt{3},0)$, $F_2(\sqrt{3},0)$, $e_1=\dfrac{\sqrt{3}}2$; (2) $2$; (3) 证明略
|
|
|
|
12696
|
|
(1) $f_1(x)$不是$T(1)$函数, $f_2(x)$是$T(1)$函数; (2) 存在, $b$的取值范围为$(1-\dfrac 1{\mathrm{e}},+\infty)$; (3) 证明略
|
|
|