This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具/文本文件/metadata.txt

4303 lines
55 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

ans
021441
错误, 正确, 错误, 错误
021442
D
021443
C
021444
A
021445
C
021446
D
021447
$-390^\circ$
021448
$304^\circ$, $-56^\circ$
021449
$-144^\circ$
021450
二, 四
021451
(1) $\{\alpha|\alpha=60^\circ+k\cdot 360^\circ, \ k\in \mathbf{Z}\}$, $-300^\circ$, $60^\circ$, $420^\circ$; (2) $\{\alpha|\alpha = -21^\circ+k\cdot 360^\circ, \ k \in \mathbf{Z}\}$, $-21^\circ$, $339^\circ$, $699^\circ$
021452
\begin{tikzpicture}[>=latex]
\fill [pattern = north east lines] (30:2) arc (30:60:2) -- (0,0) -- cycle;
\draw (30:2) -- (0,0) -- (60:2);
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\end{tikzpicture}
021453
$-1290^{\circ}$;第二象限
021454
(1) $ \{\alpha|\alpha=45^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\alpha=135^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
(3) $\{\alpha|\alpha=45^{\circ}+k\cdot 90^{\circ}, \ k \in \mathbf{Z}\}$;\\
(4) $\{\alpha|180^{\circ}+k\cdot 360^{\circ}<\alpha<270^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
021455
(1) $ \{\beta|\beta=\alpha+180^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(2) $\{\beta|\beta=\alpha+90^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
(3) $\{\beta|\beta=-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
(4) $\{\beta|\beta=90^{\circ}-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
021456
C
021457
B
021458
$\dfrac{\pi}{12}$; $\dfrac{7\pi}{12}$; $\dfrac{5\pi}{4}$; $300^{\circ}$; $324^{\circ}$; $315^{\circ}$; $(\dfrac{270}{\pi})^{\circ}$
021459
(1)$\frac{50\pi+180}{9}$;(2)$\frac{250\pi}{9}$
021460
$\sqrt{3}$
021461
(1)$\frac{\pi}{3}$;(2)$\frac{2\pi}{3}$
021462
(1)$16\pi+\frac{2\pi}{3}$,二;\\
(2)$-18\pi+\frac{4\pi}{3}$,三;\\
(3)$-2\pi+\frac{7\pi}{5}$,三;\\
(4)$-2\pi+\frac{3\pi}{4}$,二.
021463
$\frac{1}{2}$
021464
(1) $\{\alpha|-\frac{\pi}{2}+2k\pi<\alpha<2k\pi,\ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\alpha=\frac{k\pi}{2},\ k \in \mathbf{Z}\}$.
021465
(1) $\beta=\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
(2) $\beta=-\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
(3) $\beta=-\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$;\\
(4) $\beta=\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$.
021466
(1) $\{\alpha|-\frac{\pi}{4}+2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\
(2) $\{\alpha|\frac{\pi}{6}+k\pi \le \alpha \le \frac{5\pi}{6}+k\pi,\ k \in \mathbf{Z}\}$.
021467
(1) 第四象限;第四象限;\\
(2) 第二象限或者第四象限;第一象限或第二象限或者$y$轴正半轴.
021468
$A\cap B=\{\alpha | 2k \pi+\dfrac{5\pi}{6}<\alpha<2k \pi+\dfrac{7\pi}{6},\ k \in \mathbf{Z} \}$
021469
\begin{tabular}{|c|c|c|c|c|c|}
\hline &$P(-5,12)$&$P(0,-6)$&$P(6,0)$&$P(-9,-12)$&$P(1,-\sqrt{3})$\\
\hline$\sin \alpha$&$\dfrac{12}{13}$ &$-1$ & $0$&$-\dfrac{4}{5}$ &$-\dfrac{\sqrt{3}}2$ \\
\hline$\cos \alpha$&$-\dfrac{5}{13}$ &$0$ & $1$&$-\dfrac{3}{5}$ &$\dfrac 12$ \\
\hline$\tan \alpha$&$-\dfrac{12}{5}$ &不存在 & $0$&$\dfrac{4}{3}$ &$-\sqrt{3}$ \\
\hline$\cot \alpha$&$-\dfrac{5}{12}$ &$0$ & 不存在 &$\dfrac {3}{4}$ &$-\dfrac{\sqrt{3}}3$ \\
\hline
\end{tabular}
021470
$2\sqrt{5}$
021471
$\frac{2\sqrt{13}}{13}$;$-\frac{2}{3}$
021472
$ \left( -2,\frac{2}{3} \right)$
021473
$<$
021474
5
021475
2
021476
当$t=\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha =- \frac{\sqrt{15}}{3}$;\\
当$t=-\sqrt{5}$时, $\cos \alpha=- \frac{\sqrt{6}}{4}$, $\tan \alpha = \frac{\sqrt{15}}{3}$;\\
当$t=0$时, $\cos \alpha=-1$, $\tan \alpha = 0$.
021477
当$\alpha$在第二象限时,$ \sin \alpha =\frac{4}{5}$, $\tan \alpha=-\frac{4}{3}$;\\
当$\alpha$在第三象限时,$ \sin \alpha =-\frac{4}{5}$, $\tan \alpha=\frac{4}{3}$.
021478
$-\frac{\sqrt{3}}{4}$
021479
(1) 第四象限; (2) 第一、四象限;(3)第一、三象限;(4)第一、三象限.
021480
$A=\left\{ -2,-0,4 \right\}$
021481
(1) $\{\alpha|2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\
(2) $[0,3)$
021482
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline$\alpha$&$\dfrac{\pi}{3}$&$\dfrac{7 \pi}{4}$&$\dfrac{2021 \pi}{2}$&$-\dfrac{\pi}{6}$&$-\dfrac{22 \pi}{3}$\\
\hline$\sin \alpha$& $\frac{\sqrt{3}}{2}$ &$-\frac{\sqrt{2}}{2}$ & $1$&$-\frac{1}{2}$ &$\frac{\sqrt{3}}{2}$ \\
\hline$\cos \alpha$&$\frac{1}{2}$ &$\frac{\sqrt{2}}{2}$ & $0$&$\frac{\sqrt{3}}{2}$ &$-\frac{1}{2}$ \\
\hline$\tan \alpha$&$\sqrt{3}$ &$-1$ & 不存在 &$-\frac{\sqrt{3}}{3}$ &$-\sqrt{3}$\\
\hline$\cot \alpha$&$\frac{\sqrt{3}}{3}$ &$-1$ & $ 0$&$-\sqrt{3}$ &$-\frac{\sqrt{3}}{3}$ \\
\hline
\end{tabular}
\end{center}
021483
(1) $\{x|x=\frac{4\pi}{3}+2k \pi$或$ x=\frac{5\pi}{3}+2k \pi,\ k \in \mathbf{Z} \}$;\\
(2) $\{-\frac{2\pi}{3},-\frac{\pi}{3},\frac{4\pi}{3} ,\frac{5\pi}{3},\frac{10\pi}{3},\frac{11\pi}{3} \}$
021484
$-\frac{2\sqrt{5}}{5}$;$2$
021485
\textcircled{2} \textcircled{4}
021486
当$\alpha$在第一象限时,$ \sin \alpha =\frac{3\sqrt{10}}{10}$, $\cos \alpha =\frac{\sqrt{10}}{10}$,$\tan \alpha=3$;\\
当$\alpha$在第三象限时,$ \sin \alpha =-\frac{3\sqrt{10}}{10}$,$\cos \alpha =-\frac{\sqrt{10}}{10}$, $\tan \alpha=3$.
021487
$\sin k\pi =0$; $\cos k\pi=\begin{cases}1, & k=2n, \\ -1, & k=2n-1\end{cases}$($n \in \mathbf{Z}$).
021488
(1) $\{\theta | 2k \pi+\dfrac{\pi}{3}<\theta<2k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$;\\
(2) $\{\theta | k \pi-\dfrac{\pi}{2}<\theta \le k \pi-\dfrac{\pi}{6},\ k \in \mathbf{Z} \}$;\\
(3) $\{\theta | k \pi+\dfrac{\pi}{3} \le \theta \le k \pi+\dfrac{2\pi}{3},\ k \in \mathbf{Z} \}$.
021489
第二象限
021490
(1) 当$\dfrac{\alpha}{2}$在第二象限时,点$P$在第四象限;\\
当$\dfrac{\alpha}{2}$在第四象限时,点$P$在第二象限.\\
(2) $\sin (\cos \alpha) \cdot \cos (\sin \alpha)<0$
021491
当$m=0$时,$ \cos (\alpha+1905^{\circ})=-1$,$\tan (\alpha-615^{\circ})=0$;\\
当$m=\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=-\frac{\sqrt{15}}{3}$;\\
当$m=-\sqrt{5}$时,$ \cos (\alpha+1905^{\circ}) =-\frac{\sqrt{6}}{4}$,$\tan (\alpha-615^{\circ})=\frac{\sqrt{15}}{3}$.
021492
$-\dfrac{3}{8}$
021493
$-\dfrac{1}{20}$
021494
$\dfrac{7\sqrt{2}}{4}$
021495
$\dfrac{3\sqrt{5}}{5}$
021496
$11$
021497
$5$;$-\dfrac{12}{5}$;$\dfrac{4}{9}$
021498
$\sin ^2 \alpha$
021499
$1$
021500
证明略
021501
证明略
021502
$-\dfrac{12}{5}$
021503
$-\dfrac{\sqrt{3}}{2}$
021504
$\dfrac{\sqrt{7}}{2}$;$\dfrac{\sqrt{7}}{4}$
021505
$-\dfrac{\sqrt{11}}{3}$
021506
$\dfrac{\pi}{3}$
021507
$\left[ 0,\pi \right )$
021508
$-\dfrac{\sqrt{3}}{2}$;$-\dfrac{\sqrt{2}}{2}$;$-\sqrt{3}$;$-\sqrt{3}$
021509
$69^{\circ}$;$72^{\circ}$;$\dfrac{\pi}{9}$;$\dfrac{7 \pi}{15}$
021510
$\cot \alpha$
021511
$-1$
021512
$-1$
021513
$ \sin 2-\cos 2$
021514
$0$
021515
$0$
021516
$-\dfrac{\sqrt{1-a^2}}{a}$
021517
$-\dfrac{2+\sqrt{3}}{3}$
021518
(1) $\dfrac{\sqrt{3}}{2}$;(2) $\dfrac{1}{4}$.
021519
(1) $-\dfrac{2}{3}$; \\
(2) $\dfrac{2}{3}$; \\
(3) $-\dfrac{\sqrt{5}}{3}$;\\
(4) $\dfrac{\sqrt{5}}{2}$.
021520
(1) $\sin 69^{\circ}$ ; (2) $-\cos 8^{\circ}$ ;
(3) $-\tan \dfrac{\pi}{9}$; (4) $\cot \dfrac{7\pi}{15}$.
021521
$\dfrac{2}{5}$
021522
$(3,4)$
021523
$0$
021524
$\sin \alpha$
021525
$-\dfrac{1}{5}$
021526
(1) $\dfrac{\sqrt{6}}{6}-\sqrt{3}$;\\
(2) $-\dfrac{\sqrt{6}}{3}$;\\
(3) $1$
021527
(1) $\dfrac{6 \pi}{5}$; (2) $\dfrac{4 \pi}{5}$; (3) $\dfrac{13 \pi}{10}$; (4) $\dfrac{17 \pi}{10}$.
021528
(1) 当$\alpha$在第一象限时, $\sin (2 \pi-\alpha)=-\dfrac{\sqrt{3}}{2}$;
当$\alpha$在第三象限时, $\sin (2 \pi-\alpha)=\dfrac{\sqrt{3}}{2}$.\\
(2) 当$\alpha$在第一象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=-\sqrt{3}$;
当$\alpha$在第四象限时, $\dfrac{1}{\tan [\dfrac{(2 k+1) \pi}{2}+\alpha]}=\sqrt{3}$.
021529
(1) $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\
(2) $\{x | x=2k \pi \pm \dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\
(3) $\{x | x=k \pi + \dfrac{5\pi}{6},\ k \in \mathbf{Z}\}$;\\
(4) $\{x | x=2k \pi + \dfrac{5\pi}{6}$ 或$x=2k \pi + \dfrac{3\pi}{2} ,\ k \in \mathbf{Z}\}$;\\
第二种写法: $\{x | x=k \pi+ (-1)^k \cdot \dfrac{\pi}{6}+\dfrac{2\pi}{3},\ k \in \mathbf{Z}\}$;\\
(5) $\{x | x=k \pi - \arctan \dfrac{\sqrt{3}}{2}+ \dfrac{\pi}{4},\ k \in \mathbf{Z}\}$;\\
(6) $\{x | x=\dfrac{2k \pi}{5} + \dfrac{7\pi}{60}$ 或$ x=\dfrac{2k \pi}{5} - \dfrac{13\pi}{60} ,\ k \in \mathbf{Z}\}$;\\
(7) $\{x | x=k \pi - \dfrac{5\pi}{8}$ 或$x=k \pi - \dfrac{3\pi}{8} ,\ k \in \mathbf{Z}\}$;
021530
(1) $\{ \dfrac{\pi}{12},\dfrac{17\pi}{12} \}$;\\
(2) $\{ \dfrac{5\pi}{6} \}$;\\
(3) $\{ \dfrac{\pi}{12},\dfrac{5\pi}{12} \}$;\\
(4) $\{ \dfrac{5\pi}{6} \}$.
021531
(1) $\{x | x= \dfrac{2k \pi}{5} ,\ k \in \mathbf{Z}\}$;\\
(2) $\{x | x= \dfrac{2k \pi}{3} +\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\
(3) $\{x | x= 2k \pi$ 或$x=k \pi +(-1)^k \cdot \dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$;\\
(4) $\{x | x= k \pi+\dfrac{ \pi}{3}$ 或$x=k \pi -\dfrac{ \pi}{6},\ k \in \mathbf{Z}\}$.
021532
$\dfrac{3+4\sqrt{3}}{10}$
021533
$-1$
021534
$-\dfrac{33}{50}$
021535
(1) $\dfrac{\sqrt{6}-\sqrt{2}}{4}$;
(2) $\dfrac{\sqrt{6}+\sqrt{2}}{4}$;
(3) $0$.
021536
(1) $\sqrt{3} \sin \alpha$;
(2) $\cos(\alpha-2\beta)$.
021537
$\dfrac{140}{221}$
021538
$\dfrac{2\sqrt{6}-1}{6}$
021539
证明略
021540
C
021541
A
021542
$\dfrac{3\sqrt{10}+6\sqrt{2}+2\sqrt{14}-\sqrt{70}}{24}$
021543
$\dfrac{8\sqrt{3}-21}{20}$
021544
$\dfrac{\pi}{2}$
021545
$-\dfrac{2+\sqrt{15}}{6}$
021546
$-\dfrac{\sqrt{2}}{2}$
021547
$\sin 2\beta$
021548
$0$
021549
$2-\sqrt{3}$
021550
$\dfrac{16}{65}$
021551
$-\dfrac{7}{25}$
021552
$-\dfrac{4\sqrt{14}+3\sqrt{2}}{20}$
021553
$(\dfrac{4\sqrt{3}+3}{2},\dfrac{3\sqrt{3}-4}{2})$
021554
$-\dfrac{33}{65}$或$\dfrac{63}{65}$
021555
B
021556
C
021557
$-\dfrac{56}{65}$
021558
$-3$
021559
$\dfrac{3}{4}$
021560
$\dfrac{-6+5\sqrt{3}}{3}$
021561
$\tan \alpha$
021562
$\sqrt{3}$
021563
$-\dfrac{\sqrt{3}}{3}$
021564
A
021565
$-\dfrac{17}{31}$
021566
$\dfrac{\pi}{4}$
021567
(1) $\dfrac{1}{3}$;
(2) $\dfrac{1}{7}$
021568
$-\dfrac{1}{5}$
021569
当$CD = 1.4$米时,$\tan \angle ACB$最大
021570
(1) $2 \sin (\alpha+\dfrac{\pi}{6})$;
(2) $\sqrt{2} \sin (\alpha+\dfrac{7\pi}{4})$.
021571
$6\cos(\alpha+\dfrac{\pi}{3})$
021572
$2k \pi-\dfrac{\pi}{3}(k\in \mathbf{Z} )$
021573
B
021574
$\dfrac{1}{3}$
021575
$\dfrac{\pi}{12}$或$\dfrac{5\pi}{12}$
021576
$5$
021577
$\dfrac{13}{3}$
021578
$-\dfrac{p}{1+q}$
021579
$\dfrac{3}{5}$
021580
$\dfrac{24}{7}$
021581
$-\dfrac{24}{25}$
021582
$-\dfrac{15}{17}$
021583
$\sin 2 \varphi=\dfrac{4\sqrt{2}}{9}$;
$\cos 2 \varphi=-\dfrac{7}{9}$;
$\tan 2 \varphi=-\dfrac{4\sqrt{2}}{7}$.
021584
$\dfrac{24}{25}$; $\dfrac{7}{25}$; $\dfrac{24}{7}$
021585
(1) $-\dfrac{\sqrt{3}}{3}$;\\
(2) $\dfrac{3}{4}$.
021586
$\dfrac{7}{24}$
021587
$-\dfrac{2\sqrt{10}}{5}$
021588
$1$
021589
证明略
021590
$1$或$\dfrac{7}{25}$
021591
$-\dfrac{\sqrt{2-2a}}{2}$
021592
第三象限
021593
当$\dfrac{\theta}{2}$在第二象限时,
$\sin \dfrac{\theta}{2}=\dfrac{\sqrt{3}}{3}$,
$\cos \dfrac{\theta}{2}=-\dfrac{\sqrt{6}}{3}$,
$\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$;\\
当$\dfrac{\theta}{2}$在第四象限时,
$\sin \dfrac{\theta}{2}=-\dfrac{\sqrt{3}}{3}$,
$\cos \dfrac{\theta}{2}=\dfrac{\sqrt{6}}{3}$,
$\tan \dfrac{\theta}{2}=-\dfrac{\sqrt{2}}{2}$.
021594
$\dfrac{3}{5}$;$\dfrac{4}{5}$
021595
证明略
021596
$\dfrac{2}{3}$
021597
$\cos \alpha-\sin \alpha$
021598
$\sin \dfrac{ \alpha}{2}$
021599
(1) $\tan \dfrac{\theta}{2}$; (2) $\sin \alpha$.
021600
$\dfrac{\sqrt{6}}{2}$
021601
$30^{\circ}$或$90^{\circ}$
021602
$\sqrt{6}$
021603
$55$
021604
$\dfrac{\pi}{3}$或$\dfrac{2\pi}{3}$
021605
$1: \sqrt{3}: 2$
021606
$2$
021607
$\dfrac{5}{8}$
021608
等腰
021609
$\dfrac{3\sqrt{2}}{2}$
021610
$\sqrt{3}$
021611
$\dfrac{7\pi}{12}$
021612
$\dfrac{2\pi}{3}$
021613
(1) $\left( 0,9 \right)$; \\
(2) $\{9\} \cup \left[18,+ \infty \right)$;\\
(3) $\left( 9,18 \right)$.
021614
$\dfrac{3\sqrt{7}}{8}$
021615
$\sqrt{17}$或$\sqrt{65}$
021616
$\dfrac{\pi}{4}$
021617
\textcircled{1}\textcircled{2}
021618
$a>3$
021619
$a=\sqrt{21}$和$\sin B=\dfrac{5\sqrt{7}}{14}$
021620
$\dfrac{2\pi}{3}$
021621
$c=\sqrt{6}+\sqrt{2}$;$C=75^\circ$.
021622
$\dfrac{\sqrt{19}}{2}$
021623
周长的最小值为$12$,此时三角形为正三角形;\\
面积最大值为$4\sqrt{3}$,此时三角形为正三角形.
021624
$\dfrac{\sqrt{5}}{5}$
021625
$\dfrac{2\sqrt{5}}{5}$或$-\dfrac{2\sqrt{5}}{25}$
021626
$\dfrac{\sqrt{5}}{5}$或$\dfrac{11\sqrt{5}}{25}$
021627
$\left ( 2,2\sqrt{2} \right )$
021628
(1) 以$C$为直角的直角三角形;\\
(2) 以$A$为顶角的等腰三角形;\\
(3) 以$A$为直角的直角三角形.
021629
$a=\sqrt{13}$;$R=\dfrac{\sqrt{39}}{3}$.
021630
$6\sqrt{19}$
021631
(1) $x=\arcsin \dfrac{2}{5}$或$\pi-\arcsin \dfrac{2}{5}$;\\
(2) $x=\pi-\arccos \dfrac{2}{3}$或$\pi+\arccos \dfrac{2}{3}$;\\
(3) $x=k\pi- \arctan \dfrac{1}{2},k \in \mathbf{Z}$.
021632
$300\sqrt{3}$
021633
证明略
021634
$\theta=\dfrac{\pi}{12}$;塔高为$1.5$千米.
021635
$64.81$米
021636
(1) $3.9$千米;(2) $4.0$千米.
021637
$2.4$千米
021638
$\dfrac{\pi}{2}$
021639
B
021640
(1) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (-4,0) -- (4,0) node [below] {$x$};
\draw [->] (0,-1.5) -- (0,2) node [left] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-pi,0.1) -- (-pi,0) node [below left] {$-\pi$};
\draw (-0.5*pi,0.1) -- (-0.5*pi,0) node [below] {$-\frac{\pi}{2}$};
\draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$};
\draw (pi,0.1) -- (pi,0) node [below] {$\pi$};
\draw (0.1,1) -- (0,1) node [left] {$1$};
\draw (0.1,-1) -- (0,-1) node [left] {$-1$};
\draw [domain = -pi:pi,samples = 100] plot (\x,{sin(\x/pi*180)+1});
\end{tikzpicture}\\
(2) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (0,0) -- (7,0) node [below] {$x$};
\draw [->] (0,-1.5) -- (0,2) node [left] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (pi/2,0.1) -- (pi/2,0) node [below] {$\frac{\pi}{2}$};
\draw (pi,0.1) -- (pi,0) node [below] {$\pi$};
\draw (1.5*pi,0.1) -- (1.5*pi,0) node [below] {$\frac{3\pi}{2}$};
\draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$};
\draw (0.1,1) -- (0,1) node [left] {$1$};
\draw (0.1,-1) -- (0,-1) node [left] {$-1$};
\draw [domain = 0:2*pi,samples = 100] plot (\x,{-cos(\x/pi*180)});
\end{tikzpicture}
021641
(1) 定义域为$\left \{x|x \neq-\dfrac{\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$;\\
(2) 定义域为$\left \{x|\dfrac{\pi}{2}+2k\pi \leq x \leq \dfrac{3\pi}{2}+2k\pi,k \in \mathbf{Z} \right \}$.
021642
$\left \{x|\dfrac{\pi}{6} \leq x \leq \dfrac{5\pi}{6},k \in \mathbf{Z} \right \}$
021643
$2\pi$
021644
C
021645
C
021646
(1) 当$a \in (-\infty-\dfrac{\sqrt{2}}{2})\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\
当$a \in [-\dfrac{\sqrt{2}}{2},0)\cup \{1\}$ 时,方程实数解个数为$1$个;\\
当$a \in [0,1)$时,方程实数解个数为$2$个.\\
(2) 当$a \in (-\infty-1)\cup (1,+\infty)$ 时,方程实数解个数为$0$个;\\
当$a \in (0,1]$时,方程实数解个数为$1$个;\\
当$a \in \{0,-1\}$时,方程实数解个数为$2$个;\\
当$a \in (-1,0)$时,方程实数解个数为$3$个.
021647
(1) $8\pi$;
(2) $\pi$;(3) $\pi$;(4) $2\pi$.
021648
$3$
021649
A
021650
C
021651
(1) 假;(1) 假;(3) 真.
021652
D
021653
(1) $\pi$; (2) $\pi$; (3) $\dfrac{\pi}{2}$; (4) $\dfrac{\pi}{|a|}$.
021654
$4\sin(\dfrac{\pi x}{2})-2$
021655
B
021656
A
021657
(1) $f(3)=-1$; $f(5)=1$; $f(7)=-1$;\\
(2) $T=4$.
021658
$\left [2,4\right] $
021659
$\left [-2,2\right] $
021660
$ [-\dfrac{3}{2},3] $
021661
$ (-\dfrac{\sqrt{3}}{2},1] $
021662
$3$; $\left \{x|x=-\dfrac{\pi}{2}+2k\pi,k \in \mathbf{Z} \right\}$
021663
$-3$; $\left \{x|x=-\dfrac{\pi}{12}+k\pi,k \in \mathbf{Z} \right\}$
021664
当$x=\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \mathbf{Z}$时,函数的最大值为$\sqrt{13}$;\\
当$x=-\dfrac{\pi}{2}-\arcsin \dfrac{3\sqrt{13}}{13}+2k\pi,k \in \mathbf{Z}$时,函数的最小值为$-\sqrt{13}$.
021665
D
021666
C
021667
当$\alpha=\dfrac{\pi}{2}-\theta$时,竹竿的影子最长,最长为$\dfrac{\sin(\alpha+\theta)}{\sin \theta}*l$.
021668
$[-1,1]$
021669
$\{x|x\neq 2k\pi,k \in \mathbf{Z}\}$;$(-\infty,0]$
021670
$k=3$或$-3$;$b=-1$
021671
当$x=0$时,函数$y$取到最大值,最大值为$0$;\\
当$x=\dfrac{\pi}{4}$时,函数$y$取到最小值,最小值为$-1$.
021672
$f(a)=\begin{cases}
a^2+2a+2, & a\leq -1,\\
1, & -1<a<1,\\
a^2-2a+2, & a\geq 1.
\end{cases}$
021673
(1) 偶函数; (2) 不是奇函数也不是偶函数; (3) 奇函数; (4) 偶函数.
021674
(1) 真命题; (2) 真命题; (3) 假命题; (4) 真命题.
021675
B
021676
$f(x)=\cos4x$
021677
$-7$
021678
(1) 不是奇函数也不是偶函数;(2) 偶函数;(3) 偶函数.
021679
(1) 假命题;(2) 假命题;(3) 真命题; (4) 真命题.
021680
不存在这样的$\theta$,使得函数$f(x)=1+\sin (x+\theta)+\sqrt{3} \cos (x+\theta)$为奇函数.
021681
$0<\beta<\alpha<\dfrac{\pi}{2}$
021682
(1) 假命题; (2) 真命题;(3) 假命题; (4)真命题.
021683
$[-\dfrac{3\pi}{2},-\dfrac{\pi}{2}]$
021684
$[-\dfrac{\pi}{4}+k\pi,\dfrac{\pi}{4}+k\pi],k \in \mathbf{Z}$
021685
(1) $[\dfrac{3\pi}{2},2\pi]$;
(2) $[\pi,\dfrac{3\pi}{2}]$.
021686
(1) $[\dfrac{5\pi}{4}+2k\pi,\dfrac{9\pi}{4}+2k\pi],k \in \mathbf{Z}$;\\
(2) $[-\dfrac{7\pi}{6}+2k\pi,-\dfrac{\pi}{6}+2k\pi],k \in \mathbf{Z}$.
021687
$[\dfrac{\pi}{6}+\dfrac{k\pi}{2},\dfrac{5\pi}{12}+\dfrac{k\pi}{2}],k \in \mathbf{Z}$
021688
$[k\pi,k\pi+\dfrac{\pi}{2}],k \in \mathbf{Z}$
021689
正确, 证明略
021690
$4\pi$; $3$; $\dfrac{\pi}{3}$; $\dfrac{1}{4\pi}$.
021691
$\pi$; $[-\dfrac{4}{3},\dfrac{4}{3}].$
021692
$b-|a|$
021693
$y=3\sin(7x+\dfrac{\pi}{6})$
021694
(1) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (-4,0) -- (4,0) node [below] {$x$};
\draw [->] (0,-1.5) -- (0,2) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\draw ({-pi/12},0.1) -- ({-pi/12},0) node [below left] {$-\frac{\pi}{12}$};
\draw ({pi/6},0.1) -- ({pi/6},0) node [below] {$\frac{\pi}{6}$};
\draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$};
\draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above] {$\frac{2\pi}{3}$};
\draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$};
\draw (0.1,1) -- (0,1) node [left] {$1$};
\draw (0.1,-1) -- (0,-1) node [left] {$-1$};
\draw [domain = {-pi/12}:{11*pi/12},samples = 100] plot (\x,{sin(2*\x/pi*180+30)});
\end{tikzpicture}\\
(2) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (-1,0) -- (15,0) node [below] {$x$};
\draw [->] (0,-3) -- (0,3) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\draw (2*pi,0.1) -- (2*pi,0) node [below] {$2\pi$};
\draw (pi,0.1) -- (pi,0) node [below] {$\pi$};
\draw (3*pi,0.1) -- (3*pi,0) node [below] {$\frac{3\pi}{2}$};
\draw (4*pi,0.1) -- (4*pi,0) node [below] {$4\pi$};
\draw (0.1,2) -- (0,2) node [left] {$2$};
\draw (0.1,-2) -- (0,-2) node [left] {$-2$};
\draw [domain =0:4*pi,samples = 100] plot (\x,{2*sin(0.5*\x/pi*180)});
\end{tikzpicture}\\
(3) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (-1,0) -- (4,0) node [below] {$x$};
\draw [->] (0,-1) -- (0,1) node [left] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (0.25*pi,0.1) -- (0.25*pi,0) node [below] {$\frac{\pi}{4}$};
\draw (pi,0.1) -- (pi,0) node [below] {$\pi$};
\draw (0.5*pi,0.1) -- (0.5*pi,0) node [below] {$\frac{\pi}{2}$};
\draw (0.75*pi,0.1) -- (0.75*pi,0) node [above] {$\frac{3\pi}{4}$};
\draw (0.1,0.5) -- (0,0.5) node [left] {$\frac{1}{2}$};
\draw (0.1,-0.5) -- (0,-0.5) node [left] {$-\frac{1}{2}$};
\draw [domain =0:pi,samples = 100] plot (\x,{0.5*sin(2*\x/pi*180)});
\end{tikzpicture}\\
(4) \begin{tikzpicture}[>=latex, scale = 0.7]
\draw [->] (-1.5,0) -- (3.5,0) node [below] {$x$};
\draw [->] (0,-5.5) -- (0,5.5) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\draw ({-pi/3},0.1) -- ({-pi/3},0) node [below left] {$-\frac{\pi}{3}$};
\draw ({-pi/12},0.1) -- ({-pi/12},0) node [above left] {$-\frac{\pi}{12}$};
\draw ({pi/6},0.1) -- ({pi/6},0) node [below right] {$\frac{\pi}{6}$};
\draw ({5*pi/12},0.1) -- ({5*pi/12},0) node [below] {$\frac{5\pi}{12}$};
\draw ({2*pi/3},0.1) -- ({2*pi/3},0) node [above right] {$\frac{2\pi}{3}$};
\draw ({11*pi/12},0.1) -- ({11*pi/12},0) node [below right] {$\frac{11\pi}{12}$};
\draw (0.1,5) -- (0,5) node [left] {$5$};
\draw (0.1,-5) -- (0,-5) node [below left] {$-5$};
\draw [domain = {-4*pi/12}:{2*pi/3},samples = 100] plot (\x,{5*sin(2*\x/pi*180-60)});
\end{tikzpicture}
021695
$4\pi$;$4$.
021696
$f(x)=4\sin(x+\dfrac{\pi}{6})$
021697
(1) $f(x)=\dfrac{\sqrt{3}}{2}\sin(3x+\pi)+\dfrac{\sqrt{3}}{2};$\\
(2) $[-\dfrac{\pi}{2}+\dfrac{2k\pi}{3},-\dfrac{\pi}{6}+\dfrac{2k\pi}{3}],k \in \mathbf{Z}$;\\
(3) 函数最大值为$\sqrt{3}$,此时$x$值为${x|x=-\dfrac{\pi}{6}+\dfrac{2k\pi}{3},k \in \mathbf{Z}}$
021698
$x=\pi+2k\pi,k \in \mathbf{Z}$
021699
纵;伸长; $3$.
021700
缩短; $\dfrac{1}{2}$; 缩短; $\dfrac{1}{3}$.
021701
$f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{3})$
021702
$f(x)=\sin(\dfrac{1}{2}x-\dfrac{\pi}{6})$
021703
$f(x)=2\sin(\dfrac{1}{3}x+\dfrac{\pi}{6})$
021704
$x=\dfrac{\pi}{3}+2k\pi,k \in \mathbf{Z}$; $(-\dfrac{2\pi}{3}+2k\pi,0),k \in \mathbf{Z}$.
021705
C
021706
左; $\dfrac{\pi}{8}$.
021707
$f(x)=\sin(2x+\dfrac{\pi}{2})$,
$g(x)=\sin x$.
021708
(1) $\sqrt{2}$;
(2) $g(x)=2\cos(\dfrac{1}{2}x-\dfrac{\pi}{3}) $, 单调递减区间为$[\dfrac{2\pi}{3}+4k\pi,\dfrac{8\pi}{3}+4k\pi],k \in \mathbf{Z}$.
021709
(1) $2\pi$; (2) $1$; (3) $\dfrac{\pi}{2}$.
021710
(1) $[0,\dfrac{\pi}{2})$, $(\dfrac{3\pi}{2},2\pi]$; \\
(2) $[0,\dfrac{\pi}{2})$, $(\dfrac{\pi}{2},\pi]$.
021711
(1) 奇函数; (2) 偶函数.
021712
$[-5,+\infty)$
021713
(1) $<$; (2) $>$; (3) $>$; (4)$<$.
021714
\textcircled{3}
021715
最小值为$-\dfrac{\sqrt{3}}{3}$,此时$x=-\dfrac{\pi}{3}$.
021716
(1) $ \{x|x \neq \dfrac{k\pi}{2},k \in \mathbf{Z}\} $;\\
(2) 单调增区间为$(-\dfrac{\pi}{2}+\dfrac{k\pi}{2},\dfrac{k\pi}{2}), k \in \mathbf{Z}$.
021717
$\{x|x\neq \dfrac{\pi}{4}-\dfrac{1}{2}+\dfrac{k\pi}{2},k \in \mathbf{Z} \}$
021718
$(-\dfrac{\pi}{4}+\dfrac{k\pi}{3},\dfrac{\pi}{12}+\dfrac{k\pi}{3}), k \in \mathbf{Z}$
021719
B
021720
定义域为$ \{x|x \neq \dfrac{7\pi}{5}+2k\pi,k \in \mathbf{Z}\} $;\\
严格增区间为$(-\dfrac{3\pi}{5}+2k\pi,\dfrac{7\pi}{5}+2k\pi), k \in \mathbf{Z}$.
021721
函数零点为$x=\dfrac{2k\pi}{5}+2k\pi,k \in \mathbf{Z}$.
021722
(1) 假命题; (2) 假命题; (3) 假命题; (4) 真命题.
021723
$[-4,2+4\sqrt{3}]$
021724
最大张角的正切值为$\dfrac{\sqrt{2}}{4}$, 此时学生距离时钟$\sqrt{0.18}$米.
021725
\begin{center}
\begin{tikzpicture}[>=latex,scale= 0.5]
\foreach \i in {0,1,...,8}
{\draw [dashed] (0,\i) -- (8,\i) (\i,0) -- (\i,8);};
\filldraw (1,2) node [below left] {$A$} coordinate (A) circle (0.06);
\filldraw (7,3) node [below left] {$B$} coordinate (B) circle (0.06);
\filldraw (3,5) node [below left] {$C$} coordinate (C) circle (0.06);
\draw [->] (8.5,5) -- (8.5,7) node [right] {北};
\draw [->] (A) --++ (0,2) node [above left] {$E$} coordinate (E);
\draw [->] (B) --++ (-2,2) node [above right] {$F$} coordinate (F);
\draw [->] (C) --++ (2,-2) node [below left] {$G$} coordinate (G);
\end{tikzpicture}
\end{center}
021726
A
021727
C
021728
B
021729
单位圆
021730
B
021731
$\overrightarrow{CD}$
021732
$\overrightarrow{AC}$
021733
(1) 假命题; (2) 真命题; (3) 假命题; (4) 假命题.
021734
(1) $\overrightarrow{DB}$; $\overrightarrow{FE}$.\\
(2) $\overrightarrow{ED}$; $\overrightarrow{CF}$; $\overrightarrow{FA}$.\\
(3) $\overrightarrow{EF}$; $\overrightarrow{AD}$; $\overrightarrow{DA}$; $\overrightarrow{DB}$; $\overrightarrow{BD}$; $\overrightarrow{AB}$; $\overrightarrow{BA}$.
021735
$40$
021736
$40$
021737
$2$
021738
\begin{center}
\begin{tikzpicture}[>=latex]
\draw [->] (0,0) -- (1,0.7) node [midway, above] {$\overline{a}$};
\draw [->] (1.2,0) -- (2,0) node [midway, above] {$\overline{b}$};
\draw [->] (3,0) -- (2.4,0.6) node [midway, above] {$\overline{c}$};
\filldraw (6,0) node [below] {$O_1$} coordinate (O_1) circle (0.03);
\filldraw (9,0) node [below] {$O_2$} coordinate (O_2) circle (0.03);
\draw [dashed,->] (O_1) --++ (1,0.7) node[midway,below]{$\overrightarrow{a}$} coordinate (P_1);
\draw [dashed,->] (P_1) --++ (-0.6,0.6) node [midway,above right] {$\overrightarrow{c}$} coordinate (Q_1);
\draw [dashed,->] (Q_1) --++ (-0.8,0) node [midway, above] {$-\overrightarrow{b}$} coordinate (R_1);
\draw [dashed,->] (O_1) -- (Q_1);
\draw [ultra thick,->] (O_1)--(R_1);
\draw [dashed,->] (O_2) --++ (1,0.7) node[midway,below]{$\overrightarrow{a}$} coordinate (P_2);
\draw [dashed,->] (P_2) --++ (-0.6,0.6) node [midway,above right] {$\overrightarrow{c}$} coordinate (Q_2);
\draw [dashed,->] (Q_2) --++ (-0.8,0) node [midway, above] {$-\overrightarrow{b}$} coordinate (R_2);
\draw [dashed,->] (P_2) -- (R_2);
\draw [ultra thick,->] (O_2)--(R_2);
\end{tikzpicture}
\end{center}
021739
$-3\overrightarrow {a}+6 \overrightarrow {b}$
021740
$7 \overrightarrow {a}-2 \overrightarrow {b}- \overrightarrow {c}$
021741
(1) 假命题; (2) 真命题; (3) 假命题; (4) 真命题.
021742
(1) $\overrightarrow {AB}=\dfrac{1}{2}\overrightarrow {a}-\dfrac{1}{2}\overrightarrow {b}$;\\
(2) $\overrightarrow {BC}=\dfrac{1}{2}\overrightarrow {a}+\dfrac{1}{2}\overrightarrow {b}$.
021743
$\lambda=\dfrac{1}{3}$
021744
$x=2$; $y=1$.
021745
(2) $m=1$或$-1$.
021746
$\overrightarrow{DC}=\dfrac{1}{2}\overrightarrow{a}$;\\ $\overrightarrow{DC}=-\dfrac{1}{2}\overrightarrow{a}+\overrightarrow{b}$;\\
$\overrightarrow{MN}=-\dfrac{1}{4}\overrightarrow{a}-\overrightarrow{b}$.
021747
$\overrightarrow{0}$
021748
$\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}$
021749
A
021750
B
021751
C
021752
$\sqrt{3}$
021753
$-\dfrac{3\sqrt{3}}{2}$
021754
等边三角形
021755
$\dfrac{\pi}{4}$
021756
$\dfrac{2\pi}{3}$
021757
$-10\sqrt{2}$
021758
$\dfrac{4}{3}$
021759
$-\dfrac{2}{3}\overrightarrow {a}$
021760
B
021761
B
021762
A
021763
$7$
021764
$2$
021765
C
021766
外心; 重心; 垂心.
021767
$\dfrac{\pi}{3}$
021768
$-25$
021769
$\lambda=\dfrac{7}{12}$
021770
$AB=8$
021771
$t=\dfrac{1}{3}$
021772
(1) $(\overrightarrow {a}-\overrightarrow {b}) \cdot \overrightarrow {c}=\overrightarrow {a} \cdot \overrightarrow {c}- \overrightarrow {b} \cdot \overrightarrow {c}=1*1*(-\dfrac{1}{2})-1*1*(-\dfrac{1}{2})=0;\\$
(2) $k<0$或$k>2$.
021773
$[2,5]$
021774
$\arccos \dfrac{4}{5}$
021775
$\overrightarrow{OP}=\dfrac{3}{11}\overrightarrow {a}+\dfrac{2}{11}\overrightarrow {b}$
021776
(1) $(-1,0)$; (2) $(2,\dfrac{1}{2})$; (3) $(2,0)$或 $(-2,0)$; (4) $(\dfrac{3\sqrt{2}}{2},-\dfrac{3\sqrt{2}}{2})$.
021777
(1) 10; (2) $(-\dfrac{4}{5},\dfrac{3}{5})$.
021778
$x=4$, $y=1$.
021779
$(\dfrac{3}{5},-\dfrac{4}{5})$
021780
$(4,-8)$
021781
$(1,2)$
021782
C
021783
A
021784
B
021785
证明略
021786
$\lambda=\mu$ 且$\lambda$和$\mu$非零.
021787
(1) 当$t=\dfrac{3}{2}$时,点$P$在$x$轴上; 当$t=\dfrac{1}{3}$时,点$P$在$y$轴上;当$-\dfrac{2}{3}<t<-\dfrac{1}{3}$时,点$P$在第二象限;\\
(2) 四边形$OABP$不能构成平行四边形.
021788
(1) $x+2y=0$; (2) 当$x=2,y=-1$时,四边形面积为$16$;当$x=-6,y=3$时,四边形面积为$16$.
021789
$(-1,-\dfrac{3}{2})$
021790
证明略
021791
(1) $P(-\dfrac{5}{3},-\dfrac{5}{3})$; (2) $(-18,-4)$.
021792
$\overrightarrow {a} \parallel \overrightarrow {c}$,$\overrightarrow {b} \parallel \overrightarrow {d}$.
021793
$(\dfrac{3}{5},\dfrac{4}{5})$
021794
B
021795
$\overrightarrow{PM}=-\dfrac{1}{3}\overrightarrow{b}+\dfrac{1}{3}\overrightarrow{c}$, $\overrightarrow{QB}=-\dfrac{2}{3}\overrightarrow{b}+\overrightarrow{c}$.
021796
$(2,2)$, $(-6,0)$,$(4,6)$.
021797
(1) $C(0,3)$、$D(3,0)$;\\
(2) $\overrightarrow{BD}=(4,-4)$.
021798
$(-2,5)$或$(6,-7)$
021799
$[-2,\dfrac{1}{4}]$
021800
(1) $-33$; (2) $2\sqrt{65}$.
021801
$\dfrac{\pi}{4}$
021802
不存在这样的点C.
021803
$(6,4)$或$(-6,-4)$.
021804
$(-2,1)$
021805
$(0,4)$或$(0,-2)$
021806
$2$或$4$
021807
A
021808
B
021809
$D$的坐标为$(1,1)$,$\overrightarrow{AD}=(-1,2)$.
021810
$\overrightarrow{OD}=(11,6)$
021811
以$C$为直角顶点的等腰直角三角形
021812
$(-\dfrac{10}{3},\dfrac{6}{5}) \cup (\dfrac{6}{5},+\infty)$
021813
$-\dfrac{4}{9}$
021814
$7$
021815
$\lambda=\dfrac{5}{17}$和$y=\dfrac{49}{22}$
021816
$(-2,-\dfrac{1}{5})$或$(10,-5)$
021817
$(\dfrac{5}{3},\dfrac{4}{3})$
021818
$(-1,-1)$
021819
$(\dfrac{7}{2},-\dfrac{3}{2})$或$(\dfrac{3}{2},\dfrac{7}{2})$
021820
$\overrightarrow {c}=\dfrac{2}{3}\overrightarrow {a}+\dfrac{1}{3}\overrightarrow {b}$
021821
$17$
021822
证明略
021823
$x=1+\dfrac{\sqrt{3}}{2}$,$y=\dfrac{\sqrt{3}}{2}$.
021824
证明略
021825
证明略
021826
$\dfrac{13}{2}$
021827
$\overrightarrow{OG}=\dfrac{1}{3}(\overrightarrow {a}+\overrightarrow {b}+\overrightarrow {c})$
021828
(1) 当$x=\dfrac{43}{29}$时,最大值为$\sqrt{319}$;\\
(2) 当$x=2$时,最小值为$4*\sqrt{2}$;\\
(3) 当$x=\dfrac{2}{3}$时,最大值为$5$.
021829
B
021830
(1) $\dfrac{11}{12}-\dfrac{1}{10} \mathrm{i}$; (2) $-3$; (3) $2b+2a \mathrm{i}$.
021831
(1) $-\mathrm{i}$; (2) $145$; (3) $\mathrm{i}$; (4) $\dfrac{1}{2}+\dfrac{\sqrt{3}}{2} \mathrm{i}$.
021832
(1) $0$; (2) $64\mathrm{i}$.
021833
$\dfrac{3}{13}-\dfrac{2}{13}\mathrm{i}$
021834
$5-\dfrac{5}{2}\mathrm{i}$
021835
$x=4,y=3$.
021836
$x=-1,y=5$.
021837
$\mathbf{Z} \subset \mathbf{Q} \subset \mathbf{R} \subset \mathbf{C}$
021838
D
021839
B
021840
A
021841
$x$轴
021842
$\{-4\}$
021843
$m=7,n=-8$
021844
(1) $m=-2$或$3$; (2) $m \neq -2, m \neq -3, m \neq -5, m \neq -5 $; (3) 无解; (4)$m=-3$.
021845
$\dfrac{1}{2}$
021846
(1) $x=-8,y=3$或$x=3,y=-8$.\\
(2) $x=2,y=2$或$x=2,y=-1$或$x=\dfrac{1}{2},y=2$或$x=\dfrac{1}{2},y=-1$.
021847
证明略
021848
\textcircled{1} \textcircled{3}
021849
第二象限, 第四象限
021850
$(0,-3),(-4,-1)$
021851
$5,6,\sqrt{5}$.
021852
$-2+3\mathrm{i}$
021853
$(1,-3)$
021854
C
021855
\textcircled{2},\textcircled{3}
021856
(1) $m=3$或$-2$; (2) $m=3$或$5$; (3) $-2<m<3$.
021857
(1) $z_2=8-m \mathrm{i} $; (2) $\dfrac{pi}{2}$; (3) $6$或$-6$.
021858
(1) $z_3=4+\mathrm{i}$; (2) $z_3=4+\mathrm{i}$或$z_3=-4-\mathrm{i}$或$z_3=-4+7\mathrm{i}$.
021859
(1) $m=\dfrac{2+\sqrt{19}}{5}$或$m=\dfrac{2-\sqrt{19}}{5}$. (2) 总不落在第二象限.
021860
$2\sqrt{17}$
021861
$\sqrt{2}$
021862
$\pm \sqrt{5}$
021863
$1$
021864
$1$
021865
$54$
021866
$2$
021867
(1) \begin{tikzpicture}[>=latex, scale = 0.4]
\draw [->] (-4.5,0) -- (4.5,0) node [below] {$x$};
\draw [->] (0,-4.5) -- (0,4.5) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\draw (0,0) circle (3);
\draw (3,0) node [below right] {$3$};
\end{tikzpicture}; (2) \begin{tikzpicture}[>=latex]
\draw [->] (0,0) -- (3,0) node [below] {$x$};
\draw [->] (0,0) -- (0,3) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\filldraw [pattern = north east lines, draw = white] (1,1) rectangle (2,2);
\draw [dashed] (1,1) rectangle (2,2);
\foreach \i in {1,2}
{\draw [dashed] (\i,1) -- (\i,0) node [below] {$\i$};
\draw [dashed] (1,\i) -- (0,\i) node [left] {$\i$};}
\end{tikzpicture}
021868
$z_2=-2\sqrt{5}+\sqrt{5} \mathrm{i}$
021869
(1) $0\leq m \leq 3$; \\
(2) 当$m=\dfrac{3}{2}$时, $z$的模的最小值为$\dfrac{\sqrt{10}}{2}$.
021870
A
021871
\textcircled{3} ,\textcircled{5}
021872
\textcircled{2} ,\textcircled{5}
021873
$4,1+\sqrt{3}\mathrm{i}, 1-\sqrt{3}\mathrm{i} $.
021874
$\mathrm{i},-\mathrm{i}$
021875
$\sqrt{-a}\mathrm{i},-\sqrt{-a}\mathrm{i}$.
021876
A
021877
(1) $\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{10}}{2}\mathrm{i},-\dfrac{\sqrt{10}}{2}-\dfrac{\sqrt{10}}{2}\mathrm{i}$;\\
(2) $3-2\mathrm{i},-3+2\mathrm{i}$.
021878
(1) $(x-1)^2+y^2=1$;\\
(2) $[0,2]$.
021879
$3$
021880
$z_1=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}, z_2=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}$
或$z_1=-\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}, z_2=\dfrac{\sqrt{3}}{2}-\dfrac{1}{2}\mathrm{i}$.
021881
$-60+20\mathrm{i}$或$60-20\mathrm{i}$
021882
$\sqrt{2}$
021883
\textcircled{1},\textcircled{3}
021884
$(-\dfrac{2}{3},\dfrac{8}{9})$
021885
$(-1,1-\mathrm{i})$
021886
$\sqrt{2}$
021887
$(0,4)$
021888
$\{-2\sqrt{2},2\sqrt{2}\}$
021889
(1) $\{-\dfrac{3\mathrm{i}}{2},\dfrac{3\mathrm{i}}{2} \}$;\\
(2) $\{-2+2\sqrt{2}\mathrm{i},-2-2\sqrt{2}\mathrm{i}\}$;\\
(3) $\{\dfrac{-1+\sqrt{3}\mathrm{i}}{2},\dfrac{-1-\sqrt{3}\mathrm{i}}{2} \}$;\\
(4) $\{1,\mathrm{i}\}$.
021890
(1) $[x-(-1+\sqrt{2}\mathrm{i})y][x-(-1-\sqrt{2}\mathrm{i})y]$;\\
(2) $(x+y)(x-\dfrac{1+\sqrt{3}\mathrm{i}}{2}y)(x-\dfrac{1-\sqrt{3}\mathrm{i}}{2}y)$.
021891
$\dfrac{\sqrt{3}+3\mathrm{i}}{2},\dfrac{\sqrt{3}-3\mathrm{i}}{2}$
021892
$2,-2$
021893
(1) $-\dfrac{3}{4}$; (2) $6$或$-2$; (3) $\dfrac{9}{2}$或$4-2\sqrt{13}$.
021894
(1) $4+\mathrm{i}$或$4-\mathrm{i}$;\\
(2) $2$或$-2$或$2\mathrm{i}$或$-2\mathrm{i}$;\\
(3) $\dfrac{-3+\sqrt{3}\mathrm{i}}{2}$或$\dfrac{-3-\sqrt{3}\mathrm{i}}{2}$;\\
(4) $2$或$2\mathrm{i}$.
021895
(1) $(a+b+c\mathrm{i})(a+b-c\mathrm{i})$;
(2) $(x+\sqrt{5}\mathrm{i})(x-\sqrt{5}\mathrm{i})(x+\sqrt{2})(x-\sqrt{2})$.
021896
当$p=3$时,方程的解为$-3,-1-\mathrm{i}$;
当$p=1$时,方程的解为$-1,-3-\mathrm{i}$.
021897
$x^2-6x+10=0$
021898
$\{ -4,4,-2\sqrt{6},2\sqrt{6} \}$
021899
(1) $z_1=-\dfrac{1}{2}+\dfrac{\sqrt{3}\mathrm{i}}{2},z_2=-\dfrac{1}{2}-\dfrac{\sqrt{3}\mathrm{i}}{2}$或$z_1=-\dfrac{1}{2}-\dfrac{\sqrt{3}\mathrm{i}}{2},z_2=-\dfrac{1}{2}+\dfrac{\sqrt{3}\mathrm{i}}{2}$;\\
(2) $[\sqrt{13},4)$
021900
$1-\sqrt{2}$
021901
(1) $2(\cos \dfrac{3\pi}{2}+\mathrm{i}\sin \dfrac{3\pi}{2})$;\\
(2) $\cos \pi+\mathrm{i}\sin\pi$;\\
(3) $\sqrt{2}(\cos \dfrac{3\pi}{4}+\mathrm{i}\sin \dfrac{3\pi}{4})$;\\
(4) $2(\cos \dfrac{4\pi}{3}+\mathrm{i}\sin \dfrac{4\pi}{3})$.
021902
(1) $2\pi-\arccos \dfrac{3}{5}$;
(2) $\cos \dfrac{9\pi}{5}+\mathrm{i}\sin \dfrac{9\pi}{5}$.
021903
$\mathrm{i}$
021904
(1) $\sqrt{2}(\cos \dfrac{\pi}{4}+\mathrm{i}\sin \dfrac{\pi}{4})$;\\
(2) $\dfrac{\pi}{4}$.
021905
(1) $15\sqrt{2}+15\sqrt{2}\mathrm{i}$;
(2) $\dfrac{\sqrt{3}}{6}+\dfrac{\mathrm{i}}{2}$.
021906
(1) $-2^{10}$; \\
(2) $2^{11} (-\dfrac{\sqrt{3}}{2}-\dfrac{\mathrm{i}}{2})$.
021907
$-\sqrt{3}+\mathrm{i}$
021908
$18$
021909
(1) 假命题; (2) 假命题; (3) 假命题; (4) 假命题.
021910
$-\dfrac{1}{2}$; $\pi-\arctan\dfrac{1}{2}$.
021911
$\dfrac{3}{2-a}$; $\pi-\arctan\dfrac{3}{a-2}$.
021912
$\dfrac{3}{2-a}$; $\arctan\dfrac{3}{2-a}$.
021913
$[1,\sqrt{3}]$
021914
$[-\dfrac{4}{3},\dfrac{4}{3}]$
021915
$\dfrac{2\pi}{5}$
021916
$\dfrac{\pi}{10}$
021917
$\dfrac{5}{2}$
021918
$-\dfrac{\sqrt{3}}{3}$
021919
$-\dfrac{\sqrt{3}}{3}$
021920
$4$或$-\dfrac{3}{2}$
021921
(1) 直线$OB$和$AC$的斜率分别为$1,-1$;
(2) $1,-1$.
021922
(1) 当$k>0$时, $\alpha=\arctan k$;
当$k<0$时, $\alpha=\pi-\arctan(-k)$;
021923
证明略
021924
$(-\infty,-\sqrt{3})$
021925
$[1,4]$
021926
$\theta-\pi$
021927
$[\dfrac{2\pi}{3},\pi)$
021928
$\dfrac{3\pi}{2}-\theta$
021929
$a \neq 0$
021930
$[0,\dfrac{\pi}{4}]\cup
[\pi-\arctan 2,\pi)$
021931
(1) $|AB|=sec^2 \alpha$; (2) $2\alpha$.
021932
$a \neq \dfrac{1}{11}$
021933
$-a$; $\pi-\arctan a$.
021934
$\dfrac{1+k_1}{1-k_1}$
021935
$\dfrac{1+\sqrt{3}k_1}{\sqrt{3}-k_1}$
021936
证明略
021937
设$x$轴正方向的单位向量为$\overrightarrow {i}$,\\
当$<\overrightarrow {i},\overrightarrow {d}>=0$时, 投影为$\overrightarrow {d}$,数量投影为$|\overrightarrow {d}|$;\\
当$<\overrightarrow {i},\overrightarrow {d}>=\pi$时,投影为$\overrightarrow {d}$,数量投影为$-|\overrightarrow {d}|$;\\
当$<\overrightarrow {i},\overrightarrow {d}>$为锐角时,投影为$(\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}},0)$,数量投影为$\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}}$;\\
当$<\overrightarrow {i},\overrightarrow {d}>$为钝角时,投影为$(-\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}},0)$,数量投影为$-\dfrac{|\overrightarrow {d}|}{\sqrt{1+k^2}}$.
021938
$y+2=\sqrt{3}(x-1)$
021939
$\dfrac{y+2}{3}=\dfrac{x-1}{2}$
021940
$y=\dfrac{5}{2}x=5$
021941
$\dfrac{7}{2}$
021942
$y-5=\dfrac{3}{4}(x-3)$或$y-5=-\dfrac{3}{4}(x-3)$
021943
$x=-2$
021944
$\pi-\arctan 5$
021945
$[-2\sqrt{3},0) \cup (0,2\sqrt{3}]$
021946
(1) $2x+y-6=0$; $x-y-3=0$; $x+2y-6=0$;\\
(2) $x+y-4=0$; $x-3=0$; $y-1=0$.
021947
$AD$与$CD$边所在的直线方程分别为
$2x+y-4=0,x-y+4=0$.
021948
$2x-3y+6=0$或$x-2y+5=0$
021949
$4x+y-6=0$或$3x+2y-7=0$
021950
(1) $[-2,4]$; (2) $[\dfrac{3}{4},6]$
021951
$3(x-2+4(y+3)=0$
021952
$3(x-\dfrac{7}{2})+2(y-2)=0$
021953
$-1, -\sqrt{3}-1$
021954
$2x-3y-6=0$
021955
$x-y-3=0$或$x+y+1=0$
021956
$3x+y-6=0$
021957
C
021958
A
021959
D
021960
$3x-y-6=0,x+y-6=0$
021961
$3x+2y-12=0,4x-3y-3=0,2x+7y-21=0.$
021962
$\dfrac{1}{8}$
021963
$\dfrac{11}{5}$
021964
(1) $(-\infty,\dfrac{4}{3}] \cup [\dfrac{5}{3},+\infty)$;\\
(2) $(-5,-2)$.
021965
(1) $5x-y+5=0$; (2) $5x-y-10\sqrt{2}=0$或$5x-y+10\sqrt{2}=0$.
021966
$3$
021967
$-1$, $1$, $(-\infty,-1)\cup (-1,1)\cup (1,+\infty)$
021968
$-8$
021969
D
021970
B
021971
B
021972
$1$
021973
证明略
021974
$2x-y-5=0$
021975
$(-1,1)$
021976
$\sqrt{449}$
021977
(1) 重合;(2) 相交, $\arccos\dfrac{19\sqrt{370}}{370}$; (3) 相交, $\arctan \dfrac{3}{2}$.
021978
$\dfrac{1}{2}$
021979
A
021980
$y-4=0$或$4x+3y-24=0$
021981
A
021982
C
021983
$x-2y-6=0,2x+y-7=0$.
021984
$x+6y=0$
021985
$2x+9y-65=0$
021986
入射光线:$3x-y-12=0$, 反射光线: $x-3y-14=0$;
入射光线:$x-3y+4=0$, 反射光线: $3x-y+6=0$.
021987
$-5$;$8$;$(-\infty,-5) \cup (-5,8) \cup (8,+\infty)$.
021988
$(1,7)$
021989
相交
021990
D
021991
B
021992
与直线$x+4 y-7=0$垂直的直线方程为$4x-y-5=0$;
与直线$x+4 y-7=0$平行的直线方程为$x+4y+3=0$.
021993
(1) $(-b,a)$
021994
$(\dfrac{2}{5},\dfrac{4}{5})$
021995
$(\dfrac{2}{3},\dfrac{8}{3})$
021996
当$B(2,1)$或$B(-2,1)$时, $\triangle ABC$的面积的最小值为$8$.
021997
$7x-2y-11=0$
021998
$\dfrac{8\sqrt{13}}{13}$
021999
$\dfrac{9\sqrt{10}}{20}$
022000
$4x+3y+5=0$或$4x+3y-5=0$
022001
$x-y=0$或$x-y-4=0$
022002
$\dfrac{\pi}{6}$
022003
$\dfrac{13}{5}$
022004
C
022005
A
022006
$x+2y-9=0,2x-y+5=0,2x-y-7=0$.
022007
$3$或$-4$
022008
证明略
022009
$(1,0)$
022010
$x+7y-15=0$或$7x-y-5=0$
022011
$(0,3\sqrt{2}]$; $x+y-8=0.$
022012
$5x+6y=0$或$11x+2y=0$
022013
$2x+y-5=0$或$x-2y+5=0$
022014
$[-1,1]$
022015
$(8,11)$
022016
$(\dfrac{2}{5},\dfrac{19}{5})$
022017
$x+2y+9=0$
022018
$2x+y-3=0$; $x-2y+3=0$.
022019
$\sqrt{5}$
022020
(1) $2x+3y+1=0$; \\
(2) $2x+3y-1=0$; \\
(3) $2x-3y-1=0$; \\
(4) $3x-2y-1=0$; \\
(5) $3x-2y+1=0$. \\
022021
$P(-\dfrac{7}{2},0)$, $Q(-\dfrac{7}{3},\dfrac{7}{3})$
022022
(1) 正, 图略; (2) 正, 图略
022024
证明略
040890
$(x+\dfrac{3}{2})^2+(y-3)^2=3$
040891
$(x-\sqrt{2})^2+(y-1)^3=6$
040892
$\dfrac{2}{5}$
040893
$(x+3)^2+(y-2)^2=4$
040894
$(x+3)^2+(y-1)^2=5$或$(x+3)^2+(y+1)^2=5$
040895
$(x+3)^2+(y-2)^2=2$
040896
A
040897
$\pi$
040898
(1) $a^2+b^2=r^2$;\\
(2) $b=0$;\\
(3) $r=|b|$;\\
(4) $r=|a|=|b|$.
040899
$(x+1)^2+(y+2)^2=10$
040900
$(x-1)^2+(y+2)^2=2$或$(x-9)^2+(y+18)^2=338$
040901
$(x-4)^2+(y-4)^2=16$或$(x-1)^2+(y+1)^2=1$
040902
(1) 变量$x$和$y$的取值范围分别为$[-2,2]$和$[0,2]$;\\
(2) 变量$x$和$y$的取值范围分别为$[-3,3]$和$[-2,1]$.
040903
(1) 不是圆的方程;\\
(2) 不是圆的方程;\\
(3) 是圆的方程, $(x-2)^2+y^2=4$, 圆心为$(2,0)$, 半径为$2$;\\
(4) 是圆的方程, $(x-\dfrac{1}{2})^2+(y+\dfrac{3}{2})^2=\dfrac{1}{2}$, 圆心为$(\dfrac{1}{2},-\dfrac{3}{2})$, 半径为$\dfrac{\sqrt{2}}{2}$;\\
(5) 不是圆的方程.
040904
必要非充分条件
040905
(1) 点在圆外; (2) 点在圆内; (3) 点在圆内.
040906
$-1$
040907
$(-\dfrac{1}{7},1)$
040908
$(-16,10)$
040909
$(x-1)^2+(y+3)^2=4$
040910
$(x-\dfrac{a}{2})^2+(y-\dfrac{b}{2})^2=\dfrac{a^2+b^2}{4}$
040911
圆心坐标$(2,1)$,半径为$5$.
040912
$(x-1)^2+(y-2)^2=5$或$(x+1)^2+(y-\dfrac{4}{3})^2=\dfrac{25}{9}$
040913
$M_1$在圆内, $M_2$在圆外.
040914
以$AB$的中点为原点,所在直线为$x$轴,建立直角坐标系,点$P$是以$(\dfrac{25}{4},0)$为圆心, $\dfrac{15}{4}$为半径的圆.
040915
${(\dfrac{\sqrt{2}}{2},-\dfrac{\sqrt{2}}{2}),(-\dfrac{\sqrt{2}}{2},\dfrac{\sqrt{2}}{2})}$
040916
$x+y=0$
040917
A
040918
B
040919
$(-6,4)$
040920
相切
040921
$(0,3)$
040922
(1) $(-2,2)$; (2) $[\sqrt{2},2)$.
040923
(1) 当实数$-2 \le k < -\dfrac{4}{3}$或$0 < k \le \dfrac{2}{3}$时, 直线$l$与曲线$\Gamma$分别有两个公共点;\\
当实数$k$取值范围为$(-\infty,-2) \cup \{0,-\dfrac{4}{3}\}\cup (\dfrac{2}{3},+\infty)$;\\
(2) $[-2,2\sqrt{2}]$;\\
(3) $[-\dfrac{2\sqrt{5}}{5},0]$.
040924
$-\dfrac{\sqrt{6}}{3},\dfrac{\sqrt{6}}{3}$
040925
$[-\dfrac{3}{4},0]$
040926
$(3x-3)^2+(3y-1)^2=16$
040927
$(x-3)^2+(y-1)^2=9$或$(x+3)^2+(y+1)^2=9$
040928
$x-y+4=0,x-y-1=0$
040929
B
040930
$(x-4)^2+(y)^2=1$
040931
$x-2y+5=0$
040932
$(x-\dfrac{24}{5})^2+(y+\dfrac{18}{5})^2=1$
040933
$3x-y+1=0$
040934
$(x-6)^2+y^2=4$
040935
(1) $2x+y-5=0$; (2) $2\sqrt{30}$.
040936
$x^2+y^2-y=0(x \neq 0)$.
040937
$\dfrac{27}{4}$
040938
(1) $\dfrac{y}{x}$的最大值和最小值分别为$\sqrt{3}$, $-\sqrt{3}$;\\
(2) $x^2+y^2$的最大值和最小值分别为$7+4\sqrt{3}$, $7-4\sqrt{3}$;\\
(3) $x-y$的最小值为$-2-\sqrt{6}$.
040018
(1) $\dfrac{\pi}{4}$; (2) $\dfrac{\pi}{6}$; (3) $\dfrac{\pi}{10}$; (4) $\dfrac{\pi}{3}$; (5) $\dfrac{5\pi}{12}$; (6) $\dfrac{\pi}{15}$
040019
(1) $60^{\circ}$; (2) $36^{\circ}$; (3) $45^{\circ}$; (4) $75^{\circ}$; (5) $40^{\circ}$; (6) $54^{\circ}$
040020
(1) $2k\pi+\dfrac{\pi}{2}$; (2) $2k\pi+\dfrac{3\pi}{2}$; (3) $2k\pi+\dfrac{7\pi}{6}$; (4) $k\pi+\dfrac{\pi}{4}$; (5) $\dfrac{k\pi}{2}+\dfrac{\pi}{6}$
040021
(1) $k \times 360^{\circ}+60^{\circ}$;\\
(2) $k \times 360^{\circ}+330^{\circ}$; \\
(3) $k \times 360^{\circ}-210^{\circ}$; \\
(4) $k \times 180^{\circ}-45^{\circ}$; \\
(5) $k \times 90^{\circ}+50^{\circ}$
040022
(1) $330^{\circ}$; (2) $240^{\circ}$; (3) $210^{\circ}$; (4) $300^{\circ}$
040023
(1) $\dfrac{4\pi}{3}$; (2) $\dfrac{11\pi}{6}$; (3) $10-2\pi$; (4) $-10+4\pi$
040024
$18$
040025
$3$, $-2$
040026
(1) $1037$; (2) $-4k+53$; (3) $500$
040027
$-2n+10$
040028
15
040029
$7$
040030
$(4,\dfrac{14}{3}]$
040031
$2n-1$
040032
$(3,\dfrac{35}{9})$或$(\dfrac{35}{9},3)$
040033
$200$
040034
040035
$a_n=\begin{cases}1, & n=1,\\ 2n, & n=2k, \\ 2n-2, & n=2k+1\end{cases}$($k\in \mathbf{N}$, $k\ge 1$)
040036
$6n-3$
040057
$\dfrac{19}{28}\sqrt{7}$
040058
$\dfrac{79}{156}$
040059
$2$
040060
$-\dfrac{\sqrt{1-m^2}}{m}$
040061
$-\dfrac{1}{5}, \dfrac{1}{5}$
040062
$-\dfrac{1}{3}, 3$
040063
$\dfrac{1}{2}, -2$
040064
$\dfrac{\sqrt{6}}{3}$
040065
$\dfrac{1}{3}, -\dfrac{9}{4}$
040066
$\dfrac{1}{3}, \dfrac{7}{9}$
040067
$\pm\dfrac{\sqrt{2}}{3}$
040068
$\dfrac{1}{4}, \dfrac{2}{5}$
040069
$\dfrac{1-\sqrt{17}}{4}$
040070
(1) 三; (2) 三
040071
(1) $[-\dfrac{1}{2},\dfrac{1}{2})\cup\{1\}$; (2) $[-\dfrac{\pi}{3},\dfrac{\pi}{3})$; (3) $\{-\dfrac{1}{2}\}$
040072
(1) $-\tan \alpha-\cot \alpha$; (2) $-\dfrac{\sqrt{2}}{\sin \alpha}$; (3) $-1$; (4) $0$
040073
040074
$-\dfrac{10}{9}$
040075
$a_n=\dfrac{1}{3n-2}$
040076
$a_n=\dfrac{1}{n}$
040077
$(n-\dfrac{4}{5})5^n$
040078
$2^{n+1}-3$
040079
$1078$
040080
$S_n=\begin{cases}\dfrac{n^2}{2}+n-\dfrac 23+\dfrac 23\cdot 2^n, & n\text{为偶数},\\ \dfrac{n^2}{2}-\dfrac 76+\dfrac 23\cdot 2^{n+1}, & n\text{为奇数} \end{cases}$
040081
(1) 略; (2) $n^2$
040082
(1) 不存在; (2) 存在, 如$c_n=2^{n-1}$
040083
$\dfrac{\sqrt{3}}{2}$
040084
$0$
040085
$\{0,-2\pi\}$
040086
$-\dfrac{\pi}6,\dfrac 56\pi$
040087
$\cot \alpha$
040088
$7+4\sqrt{3}$
040089
$\dfrac{\sqrt{2}-\sqrt{6}}{4}$
040090
$\dfrac{\sqrt{3}+\sqrt{35}}{12}$
040091
$\dfrac 12$
040092
$5$
040093
$-\dfrac 12$
040094
$\dfrac{\pi}{12}$
040095
$\{x|x=\pm\frac 23 \pi+2k\pi,k \in \mathbf{Z}\}$
040096
$\dfrac 43 \pi$
040097
\textcircled{4}
040098
C
040099
$\dfrac{-2\sqrt{2}-\sqrt{3}}6$
040100
$-\dfrac 7{25}$
040101
$-\dfrac {\pi}3$
040102
$(-\dfrac {12}{13}, \dfrac{5}{13})$
040103
$(\dfrac {5-12\sqrt{3}}{2}, \dfrac{12-5\sqrt{3}}{2})$
040104
040105
$\dfrac {171} {221}, -\dfrac {21} {221}$
040106
$\{-\pi\}$
040107
$\dfrac{8\sqrt{2}-3}{15}$
040108
$\sin \theta$
040109
$-\dfrac{56}{65}$
040110
$\dfrac {\pi}4$
040111
040112
040181
$\dfrac 7{25}$
040182
$-\dfrac{\pi}3+2k\pi,k \in \mathbf{Z}$
040183
$\dfrac{4\sqrt{3}-3}{10}$
040184
$\dfrac 17$
040185
$4\sqrt{2} \sin(\alpha+\dfrac {7}{4}\pi))$
040186
$3$
040187
$\dfrac 32$
040188
$\sqrt{3}$
040189
$2$
040190
$\dfrac {13}{18}$
040191
$\dfrac{7}{4}\pi$
040192
$\dfrac{64}{25}$
040193
C
040194
A
040195
B
040196
C
040197
$-\dfrac{\pi}6$
040198
$\dfrac 23 \pi$
040199
$\dfrac 32$
040200
$\sqrt{1-k}$
040201
$-\dfrac{484}{729}$
040131
$-\dfrac{25}{12}$
040132
$\dfrac 52$
040133
$-\dfrac{\pi}4$
040134
$-\dfrac 12$
040135
$\dfrac 6{19}$
040136
$-\dfrac {\sqrt{3}}3$
040137
$\dfrac 3{22}$
040138
$4$
040139
$-\dfrac{63}{65}$
040226
$\dfrac 49 \sqrt{2}$
040227
$\sin \theta \cos \theta$
040228
$-\dfrac1{16}$
040229
$\dfrac 32$
040230
$\dfrac{13}{18}$
040231
$-2-\sqrt{7}$
040232
$\sin{\dfrac{\alpha}2}$
040233
$0$
040234
$\dfrac{120}{169}$
040235
$3$或$5$
040236
$\pi-\arcsin{\dfrac{24}{25}}$
040237
$\arcsin{\dfrac{3\sqrt{10}}{10}}$或$\arcsin{\dfrac{\sqrt{10}}{10}}$
040238
$60^{\circ}$或$120^{\circ}$
040239
$\dfrac 23 \pi$
040240
$8$
040241
\textcircled{4}
040242
$\dfrac 35$或$\dfrac{24}{25}$或$\dfrac{3\sqrt{10}}{10}$或$\dfrac{\sqrt{10}}{10}$
040243
(1)$\angle A=75^{\circ}, \angle B=45^{\circ}, a=\sqrt{2}+\sqrt{6}$\\
(2) $\angle B=60^{\circ}, \angle C=75^{\circ}, c=\sqrt{6}+3\sqrt{2}$或
$\angle B=120^{\circ}, \angle C=15^{\circ}, c=3\sqrt{2} - \sqrt{6}$
040244
$\dfrac 12$
040245
$\dfrac 12 \pm \dfrac{\sqrt{6}}5$
040246
$-\dfrac7{25}$
040247
$\dfrac {\sqrt{2}} 2 +\dfrac 14$
040248
$90^\circ$
040249
$\dfrac 1{a}$
040250
$-\dfrac{16}{65}$
040251
$\dfrac{24}{13}$
040252
$\dfrac{\sqrt{11}}{6}$
040253
直角三角形
040254
$120^\circ$
040255
$-\dfrac{48}{49}$
040256
等边三角形
040257
等腰三角形
040258
等腰或直角三角形
040259
$30^\circ$
040260
$30^\circ$或$90^\circ$或$150^\circ$
040261
$2\sqrt{7}$
040262
$\dfrac 12$
040263
$(0,\dfrac{\pi}4]$
040264
(1) $\dfrac 23 \pi$; (2) 等腰钝角三角形
040265
(1) $\dfrac{\sqrt{3}}6$; (2) $\dfrac{\sqrt{39}+\sqrt{3}}2$
040266
$\{x|\dfrac{\pi}6+2k\pi \le x \le \dfrac 56 \pi+2k\pi, k \in \mathbb{Z} \}$
040267
$[0,3)$
040268
$4$
040269
$\pi$
040270
$\pi$
040271
$\dfrac{\pi}{2}$
040272
$-\sin{\dfrac 12 -1}$
040273
\textcircled{2}\textcircled{3}\textcircled{5}
040274
等腰直角三角形
040275
$\{x|\dfrac{\pi}4+2k\pi \le x \le \dfrac 45 \pi+2k\pi, k \in \mathbb{Z} \}$
040276
$4\pi$
040277
$\dfrac{\pi}{2}$
040278
$\sqrt{5}$
040279
$12$
040280
$6+\sqrt{15}$
040281
\textcircled{3} \textcircled{4}
040282
$(1)b=1,c=\sqrt{13}$;\\
$(2)$等腰三角形或直角三角形
040396
$\{x|2k\pi+\dfrac{\pi}4<x<2k\pi+\dfrac 34 \pi, k\in \mathbb{Z} \}$
040397
$\{x|2k\pi+\dfrac{\pi}4 \leq x \leq 2k\pi+\dfrac 54 \pi, k\in \mathbb{Z} \}$
040398
$[k\pi+\dfrac{\pi}{4},k\pi+\dfrac 34 \pi],k \in \mathbb{Z}$
040399
$[4k\pi-\dfrac 83 \pi,4k\pi-\dfrac 23 \pi],k \in \mathbb{Z}$
040400
$[2k\pi-\dfrac {\pi}3 ,2k\pi+\dfrac {\pi}6],k \in \mathbb{Z}$
040401
$\{x|x=k\pi-\dfrac 38\pi,k \in \mathbb{Z}\}$
040402
$(-\dfrac 14,2]$
040403
$[-1,2]$
040404
$3,\dfrac{\pi}3$
040405
$y=3\cos(2x+\dfrac{\pi}3)$
040406
$\dfrac 12\sin(2x-\dfrac{\pi}2)+1$
040407
$[\dfrac{197}2 \pi,\dfrac{201}2 \pi)$
040408
$(0,\dfrac 32]$
040409
$[0,\sqrt{2}+\dfrac 32]$
040410
(1)$f(x)=2\sin(\dfrac{\pi}4x+\dfrac{\pi}4)$\\
(2)$x=-\dfrac 23$时,取最大值为$\sqrt{6}$;$x=-4$时,取最小值为$-2\sqrt{2}$
040411
$199$个
040412
(1)$T=\pi$\\
(2)非奇非偶函数\\
(3)增区间为$[k\pi-\dfrac{\pi}3,k\pi+\dfrac{\pi}6],k\in \mathbb{Z}$,减区间为$[k\pi+\dfrac{\pi}{6},k\pi+\dfrac 23\pi],k\in \mathbb{Z}$\\
(4)$y_{min}=1,x=\dfrac{\pi}2;y_{max}=\dfrac 52,x=\dfrac{\pi}6$
040413
$-1-\sqrt{2}<a<1+\sqrt{2}$
040414
$2$
040415
$[2k-1,2k],k \in \mathbb{Z}$
040416
$\dfrac{\pi}2$
040417
$[0,\dfrac 38 \pi]$和$[\dfrac 78 \pi, \pi]$
040418
$\pm \dfrac{\pi}2$
040419
$y=\sin(4x)$
040420
(1)$\dfrac{\pi}6$\\
(2)$\sqrt{3}$
040421
(1)最小正周期为$\pi$,单调减区间为$[k\pi+\dfrac{\pi}{12},k\pi+\dfrac 7{12}\pi],k \in \mathbb{Z}$\\
(2)$y_{\max}=\sqrt{3},x=\dfrac{\pi}6$时取; $y_{\min}=-2,x=\dfrac 7{12}\pi$时取
040527
040528
$1$
040529
$2$
040530
$1$
040531
$6$
040532
$\sqrt{2}\pi$
040533
$[\dfrac 12,1)$
040534
$[0,\dfrac 23\pi]$
040535
左,$\dfrac{\pi}6$
040536
$[2k\pi-\dfrac{\pi}3,2k\pi+\dfrac 23 \pi],k \in \mathbb{Z}$
040537
$-1$
040538
B
040539
A
040540
B
040541
\textcircled{2},\textcircled{3},\textcircled{6}
040542
\textcircled{2},\textcircled{3}
040543
\textcircled{1},\textcircled{2},\textcircled{4}
040544
\textcircled{1},\textcircled{2}
040545
\textcircled{1},\textcircled{2},\textcircled{4}
040546
$(\sqrt{3},2\sqrt{7}]$
040547
(1) \textcircled{1} $\varphi=k\pi,k \in \mathbb{Z}$时为奇函数;\\
\textcircled{2} $\varphi=k\pi+\dfrac{\pi}2,k \in \mathbb{Z}$时为偶函数;\\
\textcircled{3} $\varphi \neq \dfrac{k\pi}2,k \in \mathbb{Z}$时为非奇非偶函数.\\
(2)非奇非偶函数
040548
(1)$k=\sqrt{2}$或$k \in [-1,1)$时,一解;$k \in [1,\sqrt{2})$时,两解;$k \in (-\infty-1)\cup (\sqrt{2},+\infty)$时,无解.
\\
(2)$k=\dfrac 54$或$k \in [-1,1)$时,一解;$k \in [1,\dfrac 54)$时,两解;$k \in (-\infty-1)\cup (\dfrac 54,+\infty)$时,无解.
040549
(1)不符合;\\
(2)$\theta=\dfrac{\pi}8$时,$S$取最小值,最小值为$12\sqrt{2}-12$
040550
(1)$-\dfrac 12$\\
(2)\\
(3)$\{x|x=k\pi+2\arcsin{\dfrac 16}$或$x=k\pi-\dfrac{\pi}3,k \in \mathbb{Z}\}$
040551
(1)$f(x)=2\sin(2x+\dfrac{\pi}3)$\\
(2)单调增区间为$[k\pi-\dfrac{5\pi}{12},k\pi+\dfrac{\pi}{12}]$,最小值为2此时$x=k\pi-\dfrac{5\pi}{12}$\\
(3)$0<a\leq \dfrac 4{199\pi}$
040667
$\overrightarrow{0}$
040668
$4$
040669
$\dfrac 92$
040670
$\dfrac 12,\dfrac{\pi}4+k\pi,k \in \mathbb{Z}$
040671
填$(1,2)$内的任意数均可
040672
$-\dfrac 23 \sqrt{3}\overrightarrow{a}$
040673
$[2k\pi-\dfrac{5\pi}6,2k\pi+\dfrac{\pi}6], k \in \mathbb{Z}$
040674
$-\sqrt{2}$
040675
$\{x|-\dfrac{\pi}6+2k\pi<x<\dfrac{\pi}6+2k\pi,k \in \mathbb{Z}\}$
040676
$4$
040677
$[\dfrac{\pi}3,\dfrac{11\pi}3)$
040678
B
040679
A
040680
D
040681
\textcircled{1}\textcircled{2}\textcircled{4}
040682
\textcircled{1}\textcircled{3}\textcircled{4}
040683
(1)$\dfrac 23 \pi$;(2)$6\sqrt{3}$
040684
(1)$\dfrac{\pi}4$;(2)$1$;\\
(3)面积最大值为$4+4\sqrt{2}$,周长的取值范围是$(8,4+4\sqrt{4+2\sqrt{2}})$
040685
(1)最大值为$2$,此时$x=\dfrac{\pi}6+k\pi,k\in\mathbb{Z}$;\\
(2)$[k\pi-\dfrac{\pi}3,k\pi+\dfrac{\pi}6],,k\in\mathbb{Z}$;\\
(3)$y_1=1,y_2=-1,y_1+y_2+y_3+\cdots+y_{2025}=1$
040686
(1)$S=$;\\
(2)$[\sqrt{2}-1,2-\sqrt{2}]$
040687
$\{x|\dfrac{5\pi}{6}+2k\pi<x<\dfrac{13\pi}{6}+2k\pi,k\in\mathbb{Z}\}$
040688
$[1,\sqrt{2}]$
040689
$\sqrt{3}$
040690
$-\dfrac 12 \overrightarrow{a}-\dfrac 12 \overrightarrow{b}$
040691
2,-1
040692
$[-\dfrac{5\pi}8+k\pi,-\dfrac{\pi}8+k\pi],k\in \mathbb{Z}$
040693
$\dfrac 43$
040694
$y=-\sin(2x)$
040695
$(\dfrac{\pi}{12},0),(\dfrac{5\pi}{12},0)$
040696
$-2$
040697
$-\dfrac 32$
040698
$41$
040699
B
040700
D
040701
C
040702
B
040703
$\dfrac{\overrightarrow {a}+\overrightarrow {b}+\overrightarrow {c}}3$
040704
$\dfrac 23$
040705
040706
(1)$f(\dfrac 12)=\sqrt{2},f(\dfrac 14)=2^{\dfrac 14},f(0)=1$\\
(2)$f(x)=2^{|x|}$\\
(3)周期为2\\
(4)$f(x)=2^{|x-2k|},x \in [2k-1,2k+1],k \in \mathbb{Z}$
040707
充分非必要
040708
$1,\sqrt{7}$
040709
$\dfrac{2\pi}3$
040710
$\pi$
040711
$[2k\pi,2k\pi+\dfrac{\pi}2],k \in \mathbb{Z}$
040712
$\{x|x \neq \dfrac{\pi}4+k\pi,k \in \mathbb{Z}\}$
040713
$[\dfrac{5\pi}6,\dfrac{11\pi}6)$
040714
$-19$
040715
(1)$\omega=2$,严格减区间为$[k\pi+\dfrac{5\pi}{12},k\pi+\dfrac{11\pi}{12}],k \in \mathbb{Z}$\\
(2)$(2,\dfrac{4\sqrt{21}}{3}]$
040716
$(-1,-1)$
040717
$(-1,8),(1,2)$
040718
$4$
040719
$(10,-5)$
040720
$-3,3$
040721
$1,2,-3$
040722
$(2,4),(0,-4),(-2,0)$
040723
$\pm 1$
040724
$-2$
040725
22
040726
B
040727
$-\dfrac{72}{25}$
040728
$14$
040729
$(-\dfrac 79,\dfrac 73)$
040730
A
040731
B
040732
C
040733
$[-37,-13]$
040734
$\dfrac 23$
040735
(1)$\pi-\arccos{\dfrac{\sqrt{21}}{14}}$\\
(2)$k \in (-2,0) \cup (0,+\infty)$
040736
(1)$\overrightarrow{OC}=(\dfrac{1+t}2,-\dfrac{\sqrt{3}}{2} \cdot (1+t)),\overrightarrow{OD}=(\dfrac{2t+1}{2t+2},-\dfrac{\sqrt{3}}{2} \cdot \dfrac{1}{1+t})$\\
(2)$\dfrac{\pi}3$
040737
(1)$\sqrt{5}$\\(2)$k=-2\pm\sqrt{3}$\\(3)$\theta=\arctan{2}$或$\theta=\pi-\arctan{2}$
040283
$S=T$
040336
$-\dfrac {24}{25}$
040337
$\dfrac{\sqrt{3}}2$
040338
$2$
040339
$2\sin(\alpha+\dfrac 23 \pi)$
040340
$-\dfrac 12$
040341
$-4$
040342
$\{\dfrac {23}{12}\pi,\dfrac{7}{12}\pi\}$
040343
$3$
040344
$-\dfrac 12$
040345
B
040346
C
040347
A
040348
(1)$\dfrac 13$\\
(2)$\dfrac{\pi}4$
040349
(1)$2k$;\\
(2)$10k$;\\
(3)$\dfrac2{25}\sqrt{5}$
040350
$-\dfrac 13$
040351
$x=2k\pi+\dfrac{\pi}2,k \in \mathbb{Z}$
040352
$\pi$
040353
$-\dfrac 45$
040354
$\{x|k\pi \leq x < k\pi+\dfrac{\pi}2,k \in \mathbb{Z}\}$
040355
$-2$
040356
$\{0,\pi,-\dfrac{\pi}3,\dfrac{\pi}3,\dfrac 53 \pi\}$
040357
$(1,+\infty)$
040358
$[2^{-\dfrac 14},4]$
040359
$[0,\dfrac 23\pi]$
040360
$\dfrac {\pi}6$
040361
$16$
040362
D
040363
B
040364
(1)$\omega =2$,定义域为$\{x|x\neq \dfrac{k\pi}2+\dfrac{\pi}8,k \in \mathbb{Z}\}$\\
(2)$\dfrac 43$
040365
(1)$500\sqrt{7}$\\
(2)55706元
040366
(1)$x \leq \log_2 3$\\
(2)$k \in [\dfrac{225}{271},\dfrac{19}9)$
040367
(1)$m=2$\\
(2)在$(-2,2)$上严格减\\
(3)$\dfrac {13}4$
015269
$(0,+\infty)$
015270
$\dfrac{2\pi}{3}$
015271
$-3$
015272
$\dfrac{\pi}{6}$
015273
$3$
015274
$[2k\pi,2k\pi+\pi]$, $k\in \mathbf{Z}$
015275
$f(x)=-1-2x$
015276
$[3,4]$
015277
$1$
015278
\textcircled{1}
015279
$(0,\dfrac{\pi}{4})\cup (\dfrac{3\pi}{4},\pi)$
015280
$[4,+\infty)$
015281
D
015282
A
015283
D
015284
C
015285
$[1,3)$
015286
(1) $\dfrac{3}{5}$; (2) $\dfrac{49}{32}$
015287
(1) $\sqrt{7}$; (2) $\dfrac{9\sqrt{3}}{4}$
015288
(1) $y=3\sin(\dfrac{\pi}{6}x+\dfrac{\pi}{6})+8$, $x\in [0,24]$; (2) 可以进港的时间段为0点至6点, 以及12点至16点; 在0点进港开始卸货, 5点暂时驶离港口, 11点返回港口继续卸货, 16点完成卸货任务
015289
(1) 证明略; (2) $y=F(x)$是$(-\infty,+\infty)$上的严格增函数, 证明略; (3) $y=af(ax+b)$
022106
$1$
022107
$\pi$
022108
$(\dfrac{3}{5}, \frac{4}{5})$
022109
$-\dfrac{4}{5}$
022110
$-\dfrac{3}{5}+\dfrac{4}{5} \mathrm{i}$
022111
$(1, \dfrac{7}{3})$
022112
$-\dfrac{29}{48}$
022113
$y=-3 x+4$
022114
$2$
022115
$12$
022116
$[-2,2) \cup\{2 \sqrt{2}\}$
022117
$[-\sqrt{3}+1, \sqrt{3}+1]$
022118
A
022119
C
022120
C
022121
A
022122
(1) $\dfrac{\pi}{2}$; (2) $x-2y+\sqrt{5}+1=0$或$x-2y-\sqrt{5}+1=0$
022123
(1) $-1\pm \mathrm{i}$; (2) $\pm \sqrt{7}$或$\pm 3$
022124
(1) $\{x|x=k\pi \text{或}-\dfrac{\pi}{4}+k\pi, \ k\in \mathbf{Z}\}$; (2) $[\dfrac{3\pi}{8}+k\pi,\dfrac{7\pi}{8}+k\pi ]$, $k\in \mathbf{Z}$
022125
(1) $2$; (2) 值为$4$, 证明略; (3) $-2$
022126
(1) $Q_1(2,1)$, $P_2(0,1)$; (2) 存在, $k=0$, $t=0$, 证明略; (3) $f(z)=\dfrac{z-1}{z+1}$满足题意, 证明略