196 lines
2.7 KiB
Plaintext
196 lines
2.7 KiB
Plaintext
ans
|
|
|
|
15059
|
|
$\{3,5\}$
|
|
|
|
15060
|
|
$\pi$
|
|
|
|
15061
|
|
$81$
|
|
|
|
15062
|
|
$-5$
|
|
|
|
15063
|
|
$(x-1)^2+y^2=4$
|
|
|
|
15064
|
|
$40$
|
|
|
|
15065
|
|
$-2$
|
|
|
|
15066
|
|
$(300+100\sqrt{2})\pi$
|
|
|
|
15067
|
|
$\dfrac{2\pi}{3}$
|
|
|
|
15068
|
|
$\dfrac{11}{32}$
|
|
|
|
15069
|
|
$4$
|
|
|
|
15070
|
|
$[-2,2]$
|
|
|
|
15071
|
|
B
|
|
|
|
15072
|
|
A
|
|
|
|
15073
|
|
D
|
|
|
|
15074
|
|
C
|
|
|
|
15075
|
|
(1) $\dfrac{16}{65}$; (2) 周长为$32$, 面积为$24$
|
|
|
|
15076
|
|
(1) 证明略; (2) 距离为$\dfrac{\sqrt{2}}2$, 所成角为$\arcsin\dfrac{\sqrt{10}}{10}$
|
|
|
|
15077
|
|
(1) \begin{tabular}{|c|c|c|c|} \hline & 生产标兵 & 非生产标兵 & 总计\\\hline
|
|
$35$周岁及以上组 & $20$ & $60$ & $80$\\\hline
|
|
$35$周岁以下组 & $30$ & $50$ & $80$ \\\hline
|
|
总计& $50$ & $110$ & $160$ \\ \hline
|
|
\end{tabular}, $\chi^2\approx 2.91$, 因此没有$95\%$的把握认为是否为生产标兵与工人所在的年龄有关; (2) 估计该厂工人中$35$周岁以下占$40\%$, 该厂生产标兵中$35$周岁以下占$50\%$
|
|
|
|
15078
|
|
(1) $y=\pm 2\sqrt{2}x$; (2) 最大值为$\dfrac 14$, 此时$\angle AF_1B$的正切值为$-\dfrac{24}{7}$; (3) 证明略
|
|
|
|
15079
|
|
(1) $h_1(x)$是, $h_2(x)$不是; (2) $y=ax^2+(4-2a)x+a$($0<a<2$); (3) $2\sqrt{3}$
|
|
|
|
15080
|
|
平行或相交
|
|
|
|
15081
|
|
$5$
|
|
|
|
15082
|
|
$(\sqrt{3},0)$
|
|
|
|
15083
|
|
$\sqrt{3}x-y+\sqrt{3}+3=0$
|
|
|
|
15084
|
|
$[3,+\infty)$
|
|
|
|
15085
|
|
$16\pi$
|
|
|
|
15086
|
|
$(-\dfrac 12,\dfrac 23)\cup (3,+\infty)$
|
|
|
|
15087
|
|
$0$
|
|
|
|
15088
|
|
$100\sqrt{2}$
|
|
|
|
15089
|
|
$(-\dfrac 1{11},-\dfrac 1{19})$
|
|
|
|
15090
|
|
$\dfrac{\sqrt{10}}5$
|
|
|
|
15091
|
|
$[0,\dfrac\pi 3]\cup [\dfrac{2\pi}3,\pi]$
|
|
|
|
15092
|
|
C
|
|
|
|
15093
|
|
C
|
|
|
|
15094
|
|
B
|
|
|
|
15095
|
|
D
|
|
|
|
15096
|
|
(1) 最小正周期为$\pi$, 对称轴的方程为$x=\dfrac\pi 6+\dfrac{k\pi}2$, $k\in \mathbf{Z}$; (2) $(0,\dfrac 32]$
|
|
|
|
15097
|
|
(1) 证明略; (2) $\dfrac{\sqrt{5}}3$
|
|
`1
|
|
15098
|
|
(1) $a=0.26$, $b=0.38$; (2) $\dfrac 23$; (3) $X$的分布为$\begin{pmatrix} 0 & 1 & 2 \\ \dfrac 5{14} & \dfrac{15}{28} & \dfrac 3{28} \end{pmatrix}$, 期望为$\dfrac 34$
|
|
|
|
15099
|
|
(1) $x_3^2+\dfrac 14$; (2) $(-1,1)$; (3) 证明略
|
|
|
|
15100
|
|
(1) 证明略; (2) $1$; (3) 证明略
|
|
|
|
|
|
15101
|
|
$\{0,2\}$
|
|
|
|
15102
|
|
$(2,+\infty)$
|
|
|
|
15103
|
|
$3-\mathrm{i}$
|
|
|
|
15104
|
|
$5$
|
|
|
|
15105
|
|
$\dfrac 17$
|
|
|
|
15106
|
|
$32.5$
|
|
|
|
15107
|
|
$4$
|
|
|
|
15108
|
|
$(-\infty,-5]\cup \{0\}\cup [5,+\infty)$
|
|
|
|
15109
|
|
$\dfrac 65$
|
|
|
|
15110
|
|
$48\pi$
|
|
|
|
15111
|
|
$\dfrac{x^2}3-y^2=1$
|
|
|
|
15112
|
|
$\dfrac 52$
|
|
|
|
15113
|
|
A
|
|
|
|
15114
|
|
D
|
|
|
|
15115
|
|
C
|
|
|
|
15116
|
|
B
|
|
|
|
15117
|
|
(1) $\begin{cases}2, & n=1, \\ 2^{n-1}, & n\ge 2;\end{cases}$ (2) $m=11$
|
|
|
|
15118
|
|
(1) 证明略; (2) $\dfrac{\sqrt{3}}4$
|
|
|
|
|
|
15119
|
|
(1) $\chi^2\approx 35.4$, 有$99.9\%$的把握认为电解电容质量与铝箔质量有关; (2) 约为$0.846$
|
|
|
|
15120
|
|
(1)$\dfrac{x^2}2+y^2=1$; (2) $x\pm \dfrac{\sqrt{14}}7y-1=0$; (3) 证明略
|
|
|
|
15121
|
|
(1) 在$(-\pi,0]$和$[\pi,2\pi]$上均为严格增函数, 在$[0,\pi]$和$[2\pi,3\pi)$上均为严格减函数, 极小值为$-\dfrac{1}{\mathrm{e}^\pi}$, 极大值为$1$与$\dfrac{1}{\mathrm{e}^{2\pi}}$; (2) $(-\infty,2]$; (3) 证明略 |