This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/题库0.3/BasicKnowledge.json

2076 lines
111 KiB
JSON
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"B00001": {
"lesson": "K0101",
"objs": [
"K0101001B"
],
"content": "集合的概念\\\\\n(1) 集合的概念: 把一些确定的对象的\\blank{50}叫做集合, 简称集.\\\\\n(2) 集合的元素: 集合所含的各个\\blank{50}叫做这个集合的元素.\\\\\n(3) 集合中各个元素是\\blank{50}, 即一个元素在同一个集合中不能重复出现."
},
"B00002": {
"lesson": "K0101",
"objs": [
"K0101001B"
],
"content": "元素和集合的关系\\\\\n集合通常用大写字母$A$、$B$、$C$、$\\cdots$表示, 集合中的元素通常用小写字母$a$、$b$、$c$、$\\cdots$表示. 若$a$是集合$A$的元素, 则记作``\\blank{50}''; 若$a$不是集合$A$的元素, 则记作``\\blank{50}''."
},
"B00003": {
"lesson": "K0101",
"objs": [
"K0101003B"
],
"content": "常用数集及其记法\\\\\n数的集合简称数集, 我们把常用的数集用特定的字母表示:\\\\\n自然数集\\blank{20}, 整数集\\blank{20}, 有理数集\\blank{20}, 实数集\\blank{20}."
},
"B00004": {
"lesson": "K0101",
"objs": [
"K0101002B"
],
"content": "集合的分类\\\\\n(1) 有限集: 含有\\blank{50}元素的集合称为有限集.\\\\\n(2) 无限集: 含有\\blank{50}元素的集合称为无限集.\\\\\n规定: \\blank{100}的集合称为空集, 记作\\blank{20}."
},
"B00005": {
"lesson": "K0102",
"objs": [
"K0102001B"
],
"content": "列举法: 将集合中的元素\\blank{50}一一列举出来并写在大括号内, 这种表示集合的方法叫做列举法."
},
"B00006": {
"lesson": "K0102",
"objs": [
"K0102002B"
],
"content": "描述法: 在大括号内先写出这个集合的元素的一个记号, 再画一条竖线, 在竖线右面写上集合中元素\\blank{50}, 即\\blank{50}, 这种表示集合的方法叫做描述法."
},
"B00007": {
"lesson": "K0102",
"objs": [
"K0102004B"
],
"content": "区间: 表示满足一些不等式的全体实数所组成的集合, 可以用区间的形式表示. 设$a$、$b \\in \\mathbf{R}$, 且$a<b$, 我们规定:\n\\begin{center}\n\\begin{tabular}{|c|c|p{15em}<{\\centering}|}\n\\hline 集合 & 区间表示 & 数轴表示 \\\\\n\\hline$\\{x | a \\leq x \\leq b\\}$& & \\\\\n\\hline$\\{x | a<x<b\\}$& & \\\\\n\\hline$\\{x | a \\leq x<b\\}$& & \\\\\n\\hline$\\{x | a<x \\leq b\\}$& & \\\\\n\\hline$\\mathbf{R}$& & \\\\\n\\hline$\\{x | x \\geq a\\}$& & \\\\\n\\hline$\\{x | x \\leq b\\}$& & \\\\\n\\hline$\\{x | x>a\\}$& & \\\\\n\\hline$\\{x | x<b\\}$& & \\\\\n\\hline\n\\end{tabular}\n\\end{center}\n说明: 在上述所有的区间中, $a, b$叫做区间的端点, ``$\\infty$''读作``无穷大''."
},
"B00008": {
"lesson": "K0103",
"objs": [
"K0103001B"
],
"content": "子集: 对于两个集合$A$和$B$, 如果\\blank{100}, 那么集合$A$叫做集合$B$的子集, 记作\\blank{40}. 规定: 空集是任何集合的\\blank{40}."
},
"B00009": {
"lesson": "K0103",
"objs": [
"K0103002B"
],
"content": "用文氏图表示$A \\subseteq B$: \\blank{100}."
},
"B00010": {
"lesson": "K0103",
"objs": [
"K0101004B",
"K0103004B"
],
"content": "$A$\\blank{20}$A$; 若$A \\subseteq B$且\\blank{50}, 则$A=B$; 若$A \\subseteq B$且$B \\subseteq C$, 则\\blank{50}."
},
"B00011": {
"lesson": "K0103",
"objs": [
"K0103005B"
],
"content": "真子集: 对于两个集合$A$和$B$, 如果\\blank{100}, 那么集合$A$叫做集合$B$的真子集, 记作\\blank{40}. 规定: 空集是任何非空集合的\\blank{40}."
},
"B00012": {
"lesson": "K0103",
"objs": [
"K0101003B",
"K0103005B"
],
"content": "对于常用数集$\\mathbf{N},\\mathbf{R},\\mathbf{Q},\\mathbf{Z}$来说: \\blank{20}$\\subset$\\blank{20}$\\subset$\\blank{20}$\\subset$\\blank{20}."
},
"B00013": {
"lesson": "K0104",
"objs": [
"K0104001B",
"K0104002B"
],
"content": "交集:\\\\\n由既属于集合$A$又属于集合$B$的所有元素组成的集合, 叫做$A$与$B$的交集. 记作\\blank{40}.\\\\\n即$A$\\blank{10}$B=$\\blank{80}.\\\\\n用文氏图表示集合$A$与集合$B$交集: \\blank{50}."
},
"B00014": {
"lesson": "K0104",
"objs": [
"K0104003B",
"K0104004B"
],
"content": "并集:\\\\\n由所有属于集合$A$或所有属于集合$B$的元素组成的集合, 叫做$A$与$B$的并集. 记作\\blank{40}.\\\\\n即$A$\\blank{10}$B=$\\blank{80}.\\\\\n用文氏图表示集合$A$与集合$B$并集: \\blank{50}."
},
"B00015": {
"lesson": "K0104",
"objs": [
"K0104005B",
"K0104006B",
"K0104007B"
],
"content": "补集:\\\\\n设$U$是全集, $A$是$U$的子集, 则由$U$中不属于$A$的元素组成的集合, 称为集合$A$在全集$U$中的补集, 记作\\blank{40}. 即$\\overline {A}=$\\blank{80}.\\\\\n用文氏图表示集合$A$的补集: \\blank{50}."
},
"B00016": {
"lesson": "K0104",
"objs": [
"K0104001B",
"K0104003B",
"K0104006B"
],
"content": "几个结论:\\\\\n(1) $A \\cap \\overline {A}=$\\blank{20}, $A \\cup \\overline {A}=$\\blank{20}, $\\overline{\\overline {A}}=$\\blank{20}.\\\\\n(2) $\\overline{A \\cap B}=$\\blank{40}, $\\overline{A \\cup B}=$\\blank{40}."
},
"B00017": {
"lesson": "K0105",
"objs": [
"K0105002B"
],
"content": "命题: 用自然语言、符号或者式子表示, 且可以\\blank{50}的语句叫做命题.\\\\\n形如``若$\\alpha$, 则$\\beta$''的命题, 陈述句$\\alpha$称为\\blank{50}, 陈述句$\\beta$称为\\blank{50}."
},
"B00018": {
"lesson": "K0105",
"objs": [
"K0105002B",
"K0105001B"
],
"content": "``若$\\alpha$, 则$\\beta$''是真命题, 是指\\blank{50}满足条件$\\alpha$的对象都满足结论$\\beta$. 用集合语言描述\n即: $\\{x | x$满足$\\alpha\\}$\\blank{20}$\\{x | x$满足$\\beta\\}$.\\\\\n``若$\\alpha$, 则$\\beta$''是假命题, 是指\\blank{50}满足条件$\\alpha$的对象, 它不满足结论$\\beta$. 即举一个满足条件$\\alpha$而不满足结论$\\beta$的例子(称为举反例)."
},
"B00019": {
"lesson": "K0105",
"objs": [
"K0105001B"
],
"content": "推出关系: 如果命题``若$\\alpha$, 则$\\beta$''是\\blank{50}命题, 那么就称$\\alpha$推出$\\beta$, 记作\\blank{50}.\\\\\n传递性: 若$\\alpha \\Rightarrow \\beta$且$\\beta \\Rightarrow \\gamma$, 则\\blank{50}."
},
"B00020": {
"lesson": "K0106",
"objs": [
"K0106001B"
],
"content": "充分条件与必要条件:\\\\\n对于两个陈述句$\\alpha$和$\\beta$, 如果$\\alpha \\Rightarrow \\beta$, 就称$\\alpha$是$\\beta$的\\blank{40}条件, 亦称$\\beta$是$\\alpha$的\\blank{40}条件."
},
"B00021": {
"lesson": "K0106",
"objs": [
"K0106003B"
],
"content": "如果``$\\alpha \\Rightarrow \\beta$且$\\beta \\not\\Rightarrow \\alpha$'', 就称$\\alpha$是$\\beta$的\\blank{50}条件.\\\\\n如果``$\\alpha \\not \\Rightarrow \\beta$且$\\beta \\Rightarrow \\alpha$'', 就称$\\alpha$是$\\beta$的\\blank{50}条件.\\\\\n如果$\\alpha \\Leftrightarrow \\beta$(既有$\\alpha \\Rightarrow \\beta$, 又有$\\beta \\Rightarrow \\alpha$), 就称$\\alpha$是$\\beta$的\\blank{50}条件, 简称\\blank{30}条件."
},
"B00022": {
"lesson": "K0106",
"objs": [
"K0106003B"
],
"content": "证明$\\alpha$是$\\beta$的充要条件时, 既要证明\\blank{50}性, 又要证明\\blank{50}性."
},
"B00023": {
"lesson": "K0107",
"objs": [
"K0107003B"
],
"content": "反证法: 要证明``若$\\alpha$则$\\beta$''为真命题, 首先假设结论$\\beta$\\blank{50}, 然后经过正确的逻辑推理得出\\blank{50}, 从而说明``$\\beta$为假''是不可能发生的, 即结论$\\beta$是正确的. 这样的证明方法叫\\blank{50}."
},
"B00024": {
"lesson": "K0107",
"objs": [
"K0107001B",
"K0107002B"
],
"content": "一些常用的否定形式:\n\\begin{center}\n\\begin{tabular}{|p{20em}<{\\centering}|p{20em}<{\\centering}|}\n\\hline 陈述句$\\alpha$&$\\alpha$的否定形式 \\\\\n\\hline$x>1$& \\\\\n\\hline$x>1$或$y>1$& \\\\\n\\hline 至少有$2$个 & \\\\\n\\hline 所有的$a \\in A$都满足性质$p$& \\\\\n\\hline 所有的$a \\in A$都不满足性质$p$& \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00025": {
"lesson": "K0215",
"objs": [
"K0215001B"
],
"content": "函数的概念: 设$D$是一个\\blank{30}的实数集, 如果按照某种确定的对应关系$f$, 使对集合$D$中的\\blank{30}的$x$, 都有\\blank{30}实数$y$与之对应, 就称这个对应关系$f$为集合$D$上的一个函数, 记作$y=f(x)$, $x \\in D$. 其中, $x$叫做\\blank{30}, 其取值范围(数集$D$)称为该函数的\\blank{30}."
},
"B00026": {
"lesson": "K0215",
"objs": [
"K0215002B"
],
"content": "函数的两个要素是指\\blank{50}和\\blank{50}."
},
"B00027": {
"lesson": "K0215",
"objs": [
"K0215004B"
],
"content": "如果两个函数的\\blank{50}和\\blank{50}都完全一致, 就称这两个函数是相同的."
},
"B00028": {
"lesson": "K0215",
"objs": [
"K0215005B"
],
"content": "对于函数$y=f(x)$, $x\\in D$, 所有函数值组成的集合\\blank{100}称为这个函数的\\blank{30}."
},
"B00029": {
"lesson": "K0216",
"objs": [
"K0216001B"
],
"content": "表示函数的方法有\\blank{50}、\\blank{50}和\\blank{50}等."
},
"B00030": {
"lesson": "K0216",
"objs": [
"K0216002B"
],
"content": "对于函数$y=f(x)$, $x\\in D$, 它的图像是指集合\\blank{100}.\\\\\n 若点$P(x_0,y_0)$在该函数的图像上, 则$x_0$\\blank{30}, $y_0$\\blank{30};\\\\\n 若$x_0$\\blank{30}, $y_0$\\blank{30}, 则点$P(x_0,y_0)$在该函数的图像上."
},
"B00031": {
"lesson": "K0216",
"objs": [
"K0216004B"
],
"content": "平面直角坐标系中的(非空)图形是某个函数的图像的判断依据: 每一条形如\\blank{50}的直线与图形\\blank{50}个公共点."
},
"B00032": {
"lesson": "K0216",
"objs": [
"K0216006B"
],
"content": "取整函数$y=[x]$将实数$x$对应为\\blank{50}$x$的最\\blank{20}整数. 函数$y=[x]$, $x\\in [-2,2]$的图像为\n \\begin{center}\n \\begin{tikzpicture}[>=latex,scale = 0.5]\n \\draw [->] (-2.5,0) -- (2.5,0) node [below] {$x$};\n \\draw [->] (0,-2.5) -- (0,2.5) node [left] {$y$};\n \\draw (0,0) node [below left] {$O$};\n \\foreach \\i in {-2,-1,1,2}\n {\\draw [dashed,gray] (\\i,-2.5) -- (\\i,2.5) (-2.5,\\i) -- (2.5,\\i);};\n \\draw (1,0) node [below] {$1$} (0,1) node [left] {$1$};\n \\end{tikzpicture}\n \\end{center}"
},
"B00033": {
"lesson": "K0217",
"objs": [
"K0217001B"
],
"content": "平面图形$\\mathcal{P}$关于直线$l$成轴对称是指对\\blank{50}图形$\\mathcal{P}$的点$Q$, $Q$关于$l$的对称点仍然在图形$\\mathcal{P}$上.\\\\\n 平面图形$\\mathcal{P}$关于点$C$成中心对称是指对\\blank{50}图形$\\mathcal{P}$的点$Q$, $Q$关于点$C$的对称点仍然在图形$\\mathcal{P}$上."
},
"B00034": {
"lesson": "K0217",
"objs": [
"K0217002B"
],
"content": "函数$y=f(x)$, $x\\in D$是偶函数是指:\\\\\n \\textcircled{1} 定义域$D$\\blank{80}, 即对任意$x_0\\in D$, 都成立\\blank{30}$\\in D$;\\\\\n \\textcircled{2} 对\\blank{30}$x_0\\in D$, 都成立\\blank{50}."
},
"B00035": {
"lesson": "K0217",
"objs": [
"K0217003B"
],
"content": "函数$y=f(x)$, $x\\in D$是奇函数是指:\\\\\n \\textcircled{1} 定义域$D$\\blank{80}, 即对任意$x_0\\in D$, 都成立\\blank{30}$\\in D$;\\\\\n \\textcircled{2} 对\\blank{30}$x_0\\in D$, 都成立\\blank{50}."
},
"B00036": {
"lesson": "K0217",
"objs": [
"K0217002B",
"K0217003B"
],
"content": "函数$y=f(x)$, $x\\in D$是偶函数当且仅当它的图像\\blank{80}; 函数$y=f(x)$, $x\\in D$是奇函数当且仅当它的图像\\blank{80}."
},
"B00037": {
"lesson": "K0218",
"objs": [
"K0218001B"
],
"content": "已知定义在$\\mathbf{R}$上的偶函数在$x\\ge 0$处的解析式为$y=f(x)$, 那么当$a<0$时, $f(a)=$\\blank{30}."
},
"B00038": {
"lesson": "K0218",
"objs": [
"K0218001B"
],
"content": "已知定义在$\\mathbf{R}$上的奇函数在$x> 0$处的解析式为$y=f(x)$, 那么当$a<0$时, $f(a)=$\\blank{30}; 当$a=0$时, $f(a)=$\\blank{30}."
},
"B00039": {
"lesson": "K0218",
"objs": [
"K0218001B"
],
"content": "说明一个函数$y=f(x)$, $x\\in D$不是奇函数, 可以从一下两种视角中选择可行的一种:\\\\\n \\textcircled{1} 定义域不关于原点对称, 即\\blank{30}实数$x_0$, 使得$x_0\\in$\\blank{20}, 且\\blank{20}$\\not\\in $\\blank{20};\\\\\n \\textcircled{2} 对应关系不符合奇函数的要求, 即\\blank{30}实数$x_0$, 使得\\blank{50}."
},
"B00040": {
"lesson": "K0219",
"objs": [
"K0219001B"
],
"content": "对于定义在$D$上的函数$y=f(x)$, 设区间$I$是$D$的一个子集. 对于区间$I$上的任意给定的两个自变量的值$x_1$、$x_2$, 当$x_1<x_2$时, 如果总有$f(x_1) \\leq f(x_2)$, 就称函数$y=f(x)$在区间$I$上是\\blank{50}; 如果总有$f(x_1) \\geq f(x_2)$, 就称函数$y=f(x)$在区间$I$上是\\blank{50}; 如果总有\\blank{50}, 就称$y=f(x)$在区间$I$上是严格增函数; 而如果总有\\blank{50}, 就称$y=f(x)$在区间$I$上是严格减函数."
},
"B00041": {
"lesson": "K0219",
"objs": [
"K0219003B"
],
"content": "如果$y=f(x)$是区间$I$上的严格增函数, 那么$y=2^{f(x)}$是区间$I$上的\\blank{30}函数.\\\\\n 这是因为对区间$I$上任意两个实数$x_1,x_2$, 当$x_1<x_2$时, 因$y=f(x)$是严格增函数, 故\\blank{20}$<$\\blank{20}, 因此\\blank{30}$<$\\blank{30}, 所以$y=2^{f(x)}$在区间$I$上是\\blank{30}函数."
},
"B00042": {
"lesson": "K0219",
"objs": [
"K0219003B"
],
"content": "如果$y=f(x)$, $y=g(x)$都是区间$I$上的增函数, 那么$y=f(x)+g(x)$是区间$I$上的\\blank{30}函数.\\\\\n 这是因为对区间$I$上任意两个实数$x_1,x_2$, 当$x_1<x_2$时, 因$y=f(x)$是增函数, 故\\blank{50}; 又因$y=g(x)$是增函数, 故\\blank{50}. 两式作\\blank{20}, 得\\blank{80}, 从而$y=f(x)+g(x)$在区间$I$上是\\blank{30}函数."
},
"B00043": {
"lesson": "K0220",
"objs": [
"K0220001B"
],
"content": "如果函数$y=f(x)$在某个区间$I$上是增(减)函数, 那么就称函数$y=f(x)$在区间$I$上是\\blank{30}函数, 并称区间$I$是函数$y=f(x)$的一个\\blank{50}."
},
"B00044": {
"lesson": "K0220",
"objs": [
"K0220003B"
],
"content": "若偶函数$y=f(x)$在区间$[a,b]$上是严格增函数, 则它在区间$[-b,-a]$上是\\blank{50}函数.\\\\\n 这是因为对任意$x_1,x_2\\in $\\blank{50}, 当$x_1<x_2$时, 因$f(x_1)=$\\blank{30}, $f(x_2)=$\\blank{30}. 其中\\blank{20},\\blank{20}$\\in$\\blank{30}, 且\\blank{20}$<$\\blank{20}. 注意到$y=f(x)$在区间\\blank{30}上是严格增函数, 所以\\blank{30}$<$\\blank{30}, 即\\blank{30}$<$\\blank{30}, 因此$y=f(x)$在区间$[-b,-a]$上是\\blank{50}函数."
},
"B00045": {
"lesson": "K0220",
"objs": [
"K0220003B"
],
"content": "若奇函数$y=f(x)$在区间$[a,b]$上是严格增函数, 则它在区间$[-b,-a]$上是\\blank{50}函数.\\\\\n 这是因为对任意$x_1,x_2\\in $\\blank{50}, 当$x_1<x_2$时, 因$f(x_1)=$\\blank{30}, $f(x_2)=$\\blank{30}. 其中\\blank{20},\\blank{20}$\\in$\\blank{30}, 且\\blank{20}$<$\\blank{20}. 注意到$y=f(x)$在区间\\blank{30}上是严格增函数, 所以\\blank{30}$<$\\blank{30}, 即\\blank{30}$<$\\blank{30}, 因此$y=f(x)$在区间$[-b,-a]$上是\\blank{50}函数."
},
"B00046": {
"lesson": "K0221",
"objs": [
"K0221001B"
],
"content": "函数$y=f(x)$在$x_0$处的函数值是$f(x_0)$, 对于定义域内\\blank{30}的$x$, 如果\\blank{50}恒成立, 那么$f(x_0)$就叫做函数$y=f(x)$的最小值; 如果\\blank{50}恒成立, 那么$f(x_0)$就叫做函数$y=f(x)$的最大值. 最大值与最小值统称\\blank{30}."
},
"B00047": {
"lesson": "K0221",
"objs": [
"K0221001B"
],
"content": "为了说明实数$M$是函数$y=f(x)$, $x\\in D$的最大值, 需要说明以下两点:\\\\\n \\textcircled{1} \\blank{30}$x\\in D$, $f(x)$\\blank{20}$M$;\\\\\n \\textcircled{2} \\blank{30}$x\\in D$, $f(x)$\\blank{20}$M$."
},
"B00048": {
"lesson": "K0222",
"objs": [
"K0222001B"
],
"content": "在现实情境中建立函数关系时, 明确何为自变量, 何为因变量之后, 应关注定义域(即该情境中\\blank{50}的取值范围)和对应关系(即该情境中\\blank{50}随\\blank{50}的变化方式)."
},
"B00049": {
"lesson": "K0223",
"objs": [
"K0223001B"
],
"content": "对于函数$y=f(x)$, $x \\in D$, 如果存在实数$c \\in D$, 使得\\blank{50}, 就把$c$叫做该函数的零点. 零点是\\blank{30}(填入``数''或``数对'')."
},
"B00050": {
"lesson": "K0223",
"objs": [
"K0223001B"
],
"content": "函数$y=f(x)$, $x \\in D$的零点, 就是方程\\blank{50}在集合\\blank{20}中的解, 也是该函数$y=f(x)$的图像与\\blank{20}轴的交点的\\blank{20}坐标."
},
"B00051": {
"lesson": "K0223",
"objs": [
"K0223004B"
],
"content": "若函数$y=f(x)$在区间$I$上是严格增(减)函数, 则$f(x)=a$在区间$I$上有\\blank{30}个解."
},
"B00052": {
"lesson": "K0223",
"objs": [
"K0223005B"
],
"content": "若函数$y=f(x)$在区间$I$上是严格增函数, 且$f(x_0)=a$, 则$f(x)>a$在区间$I$上的解集为$I\\cap$\\blank{50}; $f(x)\\le a$在区间$I$上的解集为$I\\cap$\\blank{50}."
},
"B00053": {
"lesson": "K0224",
"objs": [
"K0224001B"
],
"content": "零点存在定理: 如果在区间$[a, b]$上, 函数$y=f(x)$的图像是\\blank{50}, 并且$f(a) \\cdot f(b)$\\blank{20}, 那么$y=f(x)$在区间$(a, b)$上\\blank{50}."
},
"B00054": {
"lesson": "K0224",
"objs": [
"K0224002B"
],
"content": "设函数$y=f(x)$在区间$[a,b]$上连续, $f(a)<0$, $f(b)>0$. 二分法求函数零点的近似值的第一步是计算$x=$\\blank{50}处的函数值$y_0$. 如果函数值$y_0$为负, 那么在区间\\blank{50}上一定有函数$f(x)$的零点; 如果函数值$y_0$为正, 那么在区间\\blank{50}上一定有函数$f(x)$的零点."
},
"B00055": {
"lesson": "K0225",
"objs": [
"K0225001B"
],
"content": "对于函数$y=f(x)$, $x \\in D$, 记其\\blank{30}为$f(D)$. 如果对$f(D)$中的\\blank{50}一个值$y$, 在$D$中满足$f(x)=y$的$x$值\\blank{50}, 那么由此得到的\\blank{20}关于\\blank{20}的函数叫做$y=f(x)$, $x \\in D$的反函数, 记作$x=f^{-1}(y)$, $y \\in f(D)$. 由于自变量习惯上常用$x$表示, 而函数值常用$y$表示, 因此通常把该函数改写为\\blank{50}, \\blank{20}$\\in$\\blank{20}."
},
"B00056": {
"lesson": "K0225",
"objs": [
"K0225002B"
],
"content": "某函数有反函数的图形化判断依据: 每一条形如\\blank{50}的直线与原来函数的图像\\blank{50}个公共点."
},
"B00057": {
"lesson": "K0225",
"objs": [
"K0225003B"
],
"content": "原来函数的值域是反函数的\\blank{30}, 原来函数的定义域是反函数的\\blank{30}."
},
"B00058": {
"lesson": "K0225",
"objs": [
"K0225004B"
],
"content": "设$y=f(x)$, $x\\in D$的反函数为$y=f^{-1}(x)$, $x\\in f(D)$.\\\\\n \\textcircled{1} 若$y_0=f(x_0)$, 则$x_0=$\\blank{50};\\\\\n \\textcircled{2} 对于任意$x_1\\in$\\blank{30}, $f(f^{-1}(x_1))=$\\blank{20}; 对于任意$x_2\\in$\\blank{30}, $f^{-1}(f(x_2))=$\\blank{20}."
},
"B00059": {
"lesson": "K0225",
"objs": [
"K0225005B"
],
"content": "求函数$y=f(x)$, $x\\in D$的反函数时, 一般要完成以下三个步骤:\\\\\n \\textcircled{1} 求原来的函数$y=f(x)$, $x\\in D$的\\blank{30}, 作为反函数的\\blank{30};\\\\\n \\textcircled{2} 在$y\\in$\\blank{30}, $x\\in$\\blank{30}的情境下, 解关于\\blank{20}的方程$y=f(x)$, 得\\blank{20}$=$\\blank{30};\\\\\n \\textcircled{3} 交换$x,y$, 并将\\blank{50}作为反函数的定义域, 表达为\\blank{50}, \\blank{30}."
},
"B00060": {
"lesson": "K0226",
"objs": [
"K0226001B"
],
"content": "点$P(a,b)$关于直线$l:y=x$的对称点的坐标为$P'$\\blank{50}."
},
"B00061": {
"lesson": "K0226",
"objs": [
"K0226002B"
],
"content": "互为反函数的两函数的图像关于直线\\blank{50}成轴对称."
},
"B00062": {
"lesson": "K0226",
"objs": [
"K0226004B",
"K0226006B"
],
"content": "若点$P(a,b)$在函数$y=f(x)$, $x\\in D$的图像上, 且该函数有反函数.\\\\\n 则\\blank{10}一定在反函数的定义域中, 点$P'$\\blank{50}一定在反函数$y=f^{-1}(x)$的图像上;\\\\\n 点$Q$\\blank{50}一定在函数$y=f(2x+1)$的图像上, 点$R$\\blank{50}一定在函数$y=f^{-1}(2x+1)$的图像上, 这表明$y=f^{-1}(2x+1)$\\blank{50}$y=f(2x+1)$的反函数(填入``一定是''或``不一定是'')."
},
"B00063": {
"lesson": "K0226",
"objs": [
"K0226005B"
],
"content": "$y=f(x)$, $x\\in D$, $y=f^{-1}(x)$, $x\\in f(D)$\\blank{30}.\\\\\n $x_1,x_2\\in f(D)$, $x_1<x_2$, $x_1,x_2\\in f(D)$, $t_1,t_2\\in$\\blank{30}, 使$x_1=$\\blank{40}, $x_2=$\\blank{40}. $t_1\\ge t_2$, $y=f(x)$\\blank{50}, $x_1=$\\blank{40}$\\ge$\\blank{40}$=x_2$. \\blank{50}. $t_1<t_2$, \\blank{50}$<$\\blank{50}."
},
"B00064": {
"lesson": "K0226",
"objs": [
"K0226005B"
],
"content": "$y=f(x)$, $x\\in D$, $y=f^{-1}(x)$, $x\\in f(D)$, \\blank{30}.\\\\\n $x_0\\in f(D)$, $t_0\\in$\\blank{30}, 使$x_0=$\\blank{40}. $y=f(x)$\\blank{50}, $-t_0\\in$\\blank{30}, $-x_0=$\\blank{30}, $-x_0\\in$\\blank{30}, \\blank{30}$=-t_0=$\\blank{30}."
},
"B00065": {
"lesson": "K0108",
"objs": [
"K0108001B"
],
"content": "``$=$'', \\blank{50}."
},
"B00066": {
"lesson": "K0108",
"objs": [
"K0108001B"
],
"content": ", : \\\\\n(1) \\blank{20}: $a$$b$$c \\in \\mathbf{R}$, $a=b$, $b=c$, \\blank{50}.\\\\\n(2) \\blank{20}: $a$$b$$c \\in \\mathbf{R}$, $a=b$, \\blank{80}.\\\\\n(3) \\blank{20}: $a$$b$$c \\in \\mathbf{R}$, $a=b$, \\blank{80}."
},
"B00067": {
"lesson": "K0108",
"objs": [
"K0108002B"
],
"content": "\\blank{50}\\blank{50}; 使, \\blank{50}."
},
"B00068": {
"lesson": "K0207",
"objs": [
"K0207001B"
],
"content": " $a$ , \\blank{100}\\blank{20}\\blank{20}, \\blank{20}."
},
"B00069": {
"lesson": "K0207",
"objs": [
"K0207002B"
],
"content": "\\blank{100}. , \\blank{50}."
},
"B00070": {
"lesson": "K0207",
"objs": [
"K0207003B"
],
"content": " $y=x^{\\frac{1}{2}}$, $y=x^3$, $y=x^{-\\frac{2}{3}}$ .\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\hspace*{3em}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00071": {
"lesson": "K0401",
"objs": [
"K0401002X"
],
"content": "$\\{a_n\\}$, $d$, , \\blank{50}.($a_n-a_{n-1}=d$, $n\\ge 2$)"
},
"B00072": {
"lesson": "K0401",
"objs": [
"K0401002X"
],
"content": "$a,b,c$$\\Leftrightarrow b$$a,c$\\blank{100} $\\Leftrightarrow$ $b=$\\blank{50}."
},
"B00073": {
"lesson": "K0401",
"objs": [
"K0401003X",
"K0401004X"
],
"content": "$\\{a_n\\}$$a_1$, $d$, \\blank{100}."
},
"B00074": {
"lesson": "K0401",
"objs": [
"K0401004X"
],
"content": "$\\{a_n\\}$, $m,n,p,q$$m+n=p+q$, $a_m+a_n=$\\blank{50}."
},
"B00075": {
"lesson": "K0201",
"objs": [
"K0201001B"
],
"content": ":\\\\\n (1) $a$ , $n$ . \\blank{100} $a$ $n$ ; $a \\neq 0$ , $a^0=$\\blank{30}, $a^{-n}=$\\blank{50}.\\\\\n (2) ($a,b\\in \\mathbf{R}$, $a,b$, $s,t\\in \\mathbf{Z}$): \\textcircled{1} $a^s\\cdot a^t=$\\blank{50}; \\textcircled{2} $(a^s)^t=$\\blank{50}; \\textcircled{3} $(ab)^t=$\\blank{50}."
},
"B00076": {
"lesson": "K0201",
"objs": [
"K0201002B",
"K0201003B"
],
"content": " $n$ :\\\\\n (1) , $n$ $1$ , $x^n=a$, $x$ $a$ $n$ . $\\sqrt[n]{a}$ $a$ $n$ , $n$ \\blank{50}, $a$ \\blank{50}.\\\\\n (2) $1$$n$, $\\sqrt[n]{0}=$\\blank{30}.\\\\\n (3) $a$. $n$ ($n\\ge 3$), $\\sqrt[n]{a^n}=$\\blank{50}; $n$ , $\\sqrt[n]{a^n}=$\\blank{50}."
},
"B00077": {
"lesson": "K0109",
"objs": [
"K0109001B"
],
"content": " $a x^2+b x+c=0(a \\neq 0)$ :\\\\\n$a x^2+b x+c=a(x+\\dfrac{b}{2 a})^2+\\dfrac{4 a c-b^2}{4 a}=0$, $(x+\\dfrac{b}{2 a})^2=\\dfrac{b^2-4 a c}{4 a^2}$, $\\Delta=b^2-4 a c$ :\\\\\n\\textcircled{1} $\\Delta>0$ , \\blank{150};\\\\\n\\textcircled{2} $\\Delta=0$ , \\blank{50};\\\\\n\\textcircled{3} $\\Delta<0$ , \\blank{100}."
},
"B00078": {
"lesson": "K0109",
"objs": [
"K0109002B"
],
"content": "`` $a_1 x^2+b_1 x+c_1=a_2 x^2+b_2 x+c_2$ ''\\blank{100}; `` $a_1 x^2+b_1 x+c_1=a_2 x^2+b_2 x+c_2$ ''\\blank{150}."
},
"B00079": {
"lesson": "K0109",
"objs": [
"K0109003B"
],
"content": " (): $a x^2+b x+c=0$($a \\neq 0$) $x_1$$x_2$, $x_1+x_2=$\\blank{50}, $x_1 x_2=$\\blank{50}.\\\\\n, :\\\\\n$\\Delta \\geq 0$ , $x_1+x_2=\\dfrac{-b+\\sqrt{\\Delta}}{2 a}+\\dfrac{-b-\\sqrt{\\Delta}}{2 a}=$\\blank{50}, $x_1 \\cdot x_2=\\dfrac{-b+\\sqrt{\\Delta}}{2 a}\\cdot \\dfrac{-b-\\sqrt{\\Delta}}{2 a}=\\dfrac{b^2-(b^2-4 a c)}{4 a^2}=\\dfrac{4 a c}{4 a^2}=$\\blank{50}."
},
"B00080": {
"lesson": "K0110",
"objs": [
"K0110001B"
],
"content": " $a$$b$ , $b>a \\Leftrightarrow$\\blank{50}; $b=a \\Leftrightarrow$\\blank{50}; $ b<a \\Leftrightarrow$\\blank{50}."
},
"B00081": {
"lesson": "K0110",
"objs": [
"K0110001B",
" K0110002B"
],
"content": ":\\\\\n(1) \\blank{40}: $a$$b$$c \\in \\mathbf{R}$, $a>b$, $b>c$, \\blank{50};\\\\\n(2) \\blank{40}: $a$$b$$c \\in \\mathbf{R}$, $a>b$, \\blank{50};\\\\\n(3) \\blank{40}: $a$$b$$c \\in \\mathbf{R}$, $a>b$, $c>0$, \\blank{50}; $a>b$, $c<0$, \\blank{50}."
},
"B00082": {
"lesson": "K0111",
"objs": [
"K0111001B"
],
"content": " $a>b>0$, $c>d>0$, $a c$\\blank{20}$b d$."
},
"B00083": {
"lesson": "K0111",
"objs": [
"K0111001B"
],
"content": "$n$ , $a>b>0$, $a^n$\\blank{20}$b^n$."
},
"B00084": {
"lesson": "K0111",
"objs": [
"K0111001B"
],
"content": "$n$ , $a,b>0$, $a^n>b^n$, $a$\\blank{20}$b$."
},
"B00085": {
"lesson": "K0111",
"objs": [
"K0111002B"
],
"content": " $a$$b$, $a^2+b^2$\\blank{20}$2 a b$, \\blank{50}."
},
"B00086": {
"lesson": "K0111",
"objs": [
"K0111003B"
],
"content": ", () . $a,b$:\\\\\n: $a>b$, $a-b>$\\blank{20};\\\\\n: $b$\\blank{30}, $a>b$, $\\dfrac{a}{b}>$\\blank{20}."
},
"B00087": {
"lesson": "K0112",
"objs": [
"K0112001B"
],
"content": ", 使\\blank{30}, \\blank{30}\\blank{50}, \\blank{50}\\blank{50}."
},
"B00088": {
"lesson": "K0112",
"objs": [
"K0112001B"
],
"content": ", , \\blank{50}."
},
"B00089": {
"lesson": "K0112",
"objs": [
"K0112002B"
],
"content": ": $a$$b$$c$ , $a$\\blank{30}, $a x^2+b x+c>0$($<0$, $\\geq 0$, $\\leq 0$) \\blank{80}."
},
"B00090": {
"lesson": "K0113",
"objs": [
"K0113001B"
],
"content": ", \\blank{50}."
},
"B00091": {
"lesson": "K0113",
"objs": [
"K0113002B"
],
"content": " $a x^2+b x+c=0$ $a>0$, $\\Delta=b^2-4 a c$.\\\\\n(1) $\\Delta<0$ , $a x^2+b x+c>0$ \\blank{50}; $a x^2+b x+c\\ge 0$ \\blank{50}; \\\\\n(2) $\\Delta=0$ , $a x^2+b x+c>0$ \\blank{50}; $a x^2+b x+c\\ge 0$ \\blank{50}."
},
"B00092": {
"lesson": "K0114",
"objs": [
"K0114001B"
],
"content": " $a x^2+b x+c=0$ $a>0$, $y=a x^2+b x+c$($a>0$), 线. $a x^2+b x+c>0$ \\blank{30}, . . $f(x)=ax^2+bx+c$($a>0$), :\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|}\n\\hline\n$y=f(x)$ & \\begin{tikzpicture}[>=latex, scale = 0.7]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-1) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -0.5:2.5] plot (\\x,{pow(\\x-1,2)-0.5});\n\\filldraw ({1-sqrt(2)/2},0) circle (0.03) node [above] {$x_1$};\n\\filldraw ({1+sqrt(2)/2},0) circle (0.03) node [above] {$x_2$};\n\\end{tikzpicture} & \\begin{tikzpicture}[>=latex, scale = 0.7]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-1) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -0.5:2.5] plot (\\x,{pow(\\x-1,2)});\n\\draw (1,0) node [below] {$x_0$};\n\\end{tikzpicture} & \\begin{tikzpicture}[>=latex, scale = 0.7]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-1) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [domain = -0.5:2.5] plot (\\x,{pow(\\x-1,2)+0.5});\n\\end{tikzpicture} \\\\\\hline\n$f(x)=0$$\\Delta$ & $\\Delta>0$ & $\\Delta=0$ & $\\Delta<0$\\\\\\hline\n$f(x)>0$ & & & \\\\ \\hline\n$f(x)<0$ & & & \\\\ \\hline\n$f(x)\\ge 0$ & & & \\\\ \\hline\n$f(x)\\le 0$ & & & \\\\ \\hline\n\\end{tabular}\n\\end{center}"
},
"B00093": {
"lesson": "K0115",
"objs": [
"K0115001B"
],
"content": "使():\\\\\n\\textcircled{1} : , , ;\\\\\n\\textcircled{2} () () : , $x$ , , : $a>f(x)$ $\\Leftrightarrow a>f(x)$\\blank{20}; $a<f(x)$ $\\Leftrightarrow a<f(x)$\\blank{20}."
},
"B00094": {
"lesson": "K0115",
"objs": [
"K0115002B"
],
"content": " $a x^2+b x+c>0$ $(\\alpha, \\beta)$, $\\alpha<\\beta$, $\\alpha, \\beta$ , $a$\\blank{30}, $b=$\\blank{30}, $c=$\\blank{30}, ."
},
"B00095": {
"lesson": "K0116",
"objs": [
"K0116002B"
],
"content": ": , (), ."
},
"B00096": {
"lesson": "K0116",
"objs": [
"K0116002B"
],
"content": "``'', : $\\dfrac{f(x)}{g(x)}>0 \\Leftrightarrow$\\blank{50}; $\\dfrac{f(x)}{g(x)}<0 \\Leftrightarrow$\\blank{50}."
},
"B00097": {
"lesson": "K0116",
"objs": [
"K0116002B"
],
"content": "``'', : $\\dfrac{f(x)}{g(x)}\\geq 0 \\Leftrightarrow$\\blank{50}, $g(x)$\\blank{30}; $\\dfrac{f(x)}{g(x)}\\leq 0 \\Leftrightarrow$\\blank{50}, $g(x)$\\blank{30};"
},
"B00098": {
"lesson": "K0117",
"objs": [
"K0117001B",
"K0117002B"
],
"content": ", , . ."
},
"B00099": {
"lesson": "K0117",
"objs": [
"K0117001B"
],
"content": "``'', $a>0$, (: ``$a>0$''):\\\\\n$|f(x)|>a \\Leftrightarrow$\\blank{120}; $|f(x)|<a \\Leftrightarrow$\\blank{120};\\\\\n$|f(x)| \\geq a \\Leftrightarrow$\\blank{120}; $|f(x)| \\leq a \\Leftrightarrow$\\blank{120}."
},
"B00100": {
"lesson": "K0117",
"objs": [
"K0117001B"
],
"content": "``'', :\\\\\n$|f(x)| \\geq g(x) \\Leftrightarrow$\\blank{120}; $|f(x)| \\leq g(x) \\Leftrightarrow$\\blank{120}."
},
"B00101": {
"lesson": "K0118",
"objs": [
"K0118001B"
],
"content": " $a, b$, \\blank{50}$a, b$ , \\blank{50} $a, b$ ."
},
"B00102": {
"lesson": "K0118",
"objs": [
"K0118002B"
],
"content": ": \\blank{30}, $a, b$, \\blank{80}, \\blank{50}."
},
"B00103": {
"lesson": "K0118",
"objs": [
"K0118003B"
],
"content": ": $a, b$, $(\\dfrac{a+b}{2})^2 \\geq$\\blank{50}, \\blank{50}."
},
"B00104": {
"lesson": "K0119",
"objs": [
"K0119001B"
],
"content": " $a, b$ $a b$ , $\\dfrac{a+b}{2}\\geq \\sqrt{a b}$, $a+b$ \\blank{20}\\blank{50}, \\blank{50}."
},
"B00105": {
"lesson": "K0119",
"objs": [
"K0119001B"
],
"content": " $a, b$ $a+b$ , $ab\\le (\\dfrac{a+b}{2})^2$, $a b$ \\blank{20}\\blank{50}, \\blank{50}."
},
"B00106": {
"lesson": "K0120",
"objs": [
"K0120001B"
],
"content": ": $a$$b$ , $|a+b|$\\blank{20}$|a|+|b|$, \\blank{50}."
},
"B00107": {
"lesson": "K0120",
"objs": [
"K0120002B"
],
"content": ": , $a=x-y$, $b=y$, $|x| \\le $\\blank{40}+\\blank{20}, $x$$y$, \\blank{20}$-$\\blank{20}$\\le$\\blank{40}. \\blank{50}."
},
"B00108": {
"lesson": "K0402",
"objs": [
"K0402001X",
"K0402004X",
"K0402006X"
],
"content": "$\\{a_n\\}$$a_1$, $d$$\\{a_n\\}$$n$$S_n=$\\blank{90}($a_1,d,n$), $S_n=$\\blank{90}($a_1,a_n,n$)."
},
"B00109": {
"lesson": "K0402",
"objs": [
"K0402005X"
],
"content": "$\\{a_n\\}$,$n$$S_n$$a_n$: $n=1$, $a_1=S_1$; $n$\\blank{30}, $a_n=$\\blank{60}."
},
"B00110": {
"lesson": "K0403",
"objs": [
"K0403001X"
],
"content": "$\\{a_n\\}$, \\blank{30}, , \\blank{30}.($\\dfrac{a_n}{a_{n-1}}=q$, $q\\neq 0$, $n\\ge 2$)"
},
"B00111": {
"lesson": "K0403",
"objs": [
"K0403001X"
],
"content": "$a,b,c$ $\\Leftrightarrow b$$a,c$\\blank{60} $\\Leftrightarrow$ \\blank{60}."
},
"B00112": {
"lesson": "K0403",
"objs": [
"K0403002X"
],
"content": "$\\{a_n\\}$$a_1$, $q$, \\blank{90}."
},
"B00113": {
"lesson": "K0403",
"objs": [
"K0403004X"
],
"content": "$\\{a_n\\}$, $m,n,p,q$$m+n=p+q$, $a_ma_n=$\\blank{60}."
},
"B00114": {
"lesson": "K0404",
"objs": [
"K0404001X",
"K0404002X",
"K0403003X"
],
"content": "$\\{a_n\\}$$a_1$, $q$$S_n$$\\{a_n\\}$$n$, $q=1$, $S_n=$\\blank{60}; $q\\neq 1$, $S_n=$\\blank{90}($a_1,q,n$), $S_n=$\\blank{90}($a_1,a_n,q$)."
},
"B00115": {
"lesson": "K0405",
"objs": [
"K0405001X"
],
"content": "$\\{a_n\\}$, $n$, $a_n$$a$, $a$, \\blank{90}."
},
"B00116": {
"lesson": "K0405",
"objs": [
"K0405002X",
"K0405003X"
],
"content": "$a$, $q$, $n$$S_n$, \\blank{90}, $\\displaystyle\\sum_{i=1}^{+\\infty}aq^{i-1}=\\displaystyle\\lim_{n \\to +\\infty}S_n=$\\blank{90}."
},
"B00117": {
"lesson": "K0406",
"objs": [
"K0406001X"
],
"content": "\\blank{60}."
},
"B00118": {
"lesson": "K0406",
"objs": [
"K0406001X"
],
"content": ", \\blank{60}, \\blank{60}."
},
"B00119": {
"lesson": "K0406",
"objs": [
"K0406004X"
],
"content": "$2$, ($n$, $a_{n+1}\\ge a_{n}$)$\\{a_n\\}$\\blank{60};\\\\\n$2$, ($n$, $a_{n+1}> a_{n}$)$\\{a_n\\}$\\blank{60};\\\\\n$2$, ($n$, \\blank{60})$\\{a_n\\}$\\blank{60};\\\\\n$2$, ($n$, \\blank{60})$\\{a_n\\}$\\blank{60}."
},
"B00120": {
"lesson": "K0406",
"objs": [
"K0406004X"
],
"content": "\\blank{60}, \\blank{60}."
},
"B00121": {
"lesson": "K0406",
"objs": [
"K0406002X"
],
"content": "$\\{a_n\\}$, $n$$a_n$, $\\{a_n\\}$\\blank{60}."
},
"B00122": {
"lesson": "K0407",
"objs": [
"K0407001X"
],
"content": "$\\{a_n\\}$$a_n$ $a_{n-1}$(), \\blank{60}."
},
"B00123": {
"lesson": "K0408",
"objs": [
"K0408003X"
],
"content": "$n$, :\\\\\n\\textcircled{1} $n$$n_0$($n_0$), ;\\\\\n\\textcircled{2} \\blank{50}(\\blank{60}, $k$), \\blank{50}.\\\\\n, $n_0$$n$. ."
},
"B00124": {
"lesson": "K0409",
"objs": [
"K0409001X"
],
"content": "``'': $n$, , , ."
},
"B00125": {
"lesson": "K0410",
"objs": [
"K0410001X"
],
"content": ", $A$, $f(x)$$x_1$, $x_{n+1}=f(x_n)$, . $x_n$$A$, $\\displaystyle\\lim_{n \\to +\\infty}x_n=A$, $A$. ,$x_1$, $\\{x_n\\}$, ."
},
"B00126": {
"lesson": "K0410",
"objs": [
"K0410001X"
],
"content": "$\\sqrt{2}$\\blank{90}."
},
"B00127": {
"lesson": "K0202",
"objs": [
"K0202001B",
"K0201004B",
"K0202003B"
],
"content": ":\\\\\n(1) : $a^0=$\\blank{50}($a \\neq 0$);\\\\\n(2) : $a^{-n}=$\\blank{50}($a \\neq 0$, $n$ );\\\\\n(3) : $a^{\\frac{m}{n}}=$\\blank{50}($m, n$, $n \\geq 2$, $a$使);\\\\\n(4) : $a^{-\\frac{m}{n}}=$\\blank{50}($m, n$, $n \\geq 2$, $a$使)."
},
"B00128": {
"lesson": "K0203",
"objs": [
"K0203001B",
"K0203002B"
],
"content": "($a,b$\\blank{20}, $s,t\\in \\mathbf{R}$):\\\\\n(1) $a^s a^t=$\\blank{50};\\\\\n(2) $(a^s)^t=$\\blank{50};\\\\\n(3) $(ab)^t=$\\blank{50}."
},
"B00129": {
"lesson": "K0203",
"objs": [
"K0203003B"
],
"content": ": $a>$\\blank{20}, $s>$\\blank{20}, \\blank{20}$>$\\blank{20}."
},
"B00130": {
"lesson": "K0204",
"objs": [
"K0204001B",
"K0204002B"
],
"content": ":\\\\\n(1) $a>0$, $a \\neq 1$, $N>0$ , \\blank{50} $x$, $N$ $a$ , \\blank{50}, $N$ \\blank{30}.\\\\\n(2) ($a>0$, $a\\ne 1$, $N>0$, $b\\in \\mathbf{R}$):\\\\\n\\textcircled{1} $a^{\\log _a N}=$\\blank{30}; \\textcircled{2} $\\log_a a^b=$\\blank{30}; \\textcircled{3} $\\log _a 1=$\\blank{50}; \\textcircled{4} $\\log _a a=$\\blank{50}."
},
"B00131": {
"lesson": "K0204",
"objs": [
"K0204003B"
],
"content": ":\\\\\n(1) \\blank{100}, \\blank{50};\\\\\n(2) $\\mathrm{e}$ \\blank{30}, $\\mathrm{e} \\approx$\\blank{50}, \\blank{100}, \\blank{50}."
},
"B00132": {
"lesson": "K0205",
"objs": [
"K0205001B"
],
"content": "($a>0$, $a\\ne 1$, $M,N\\in (0,+\\infty)$, $c\\in \\mathbf{R}$):\\\\\n(1) 1: $\\log_a(MN)=$\\blank{100};\\\\\n(2) 2: $\\log_a\\dfrac{M}{N}=$\\blank{100};\\\\\n(3) 3: $\\log_aN^c=$\\blank{100}. , $\\log _a \\sqrt[n]{M}=$\\blank{50}($n$ $1$ )."
},
"B00133": {
"lesson": "K0206",
"objs": [
"K0206001B",
"K0206003B"
],
"content": "($a>0$, $a\\ne 1$, $b>0$, $b\\ne 1$, $N>0$): $\\log_a N=\\dfrac{\\ \\blank{50}\\ }{\\ \\blank{50}\\ }$.\\\\\n1: $\\log _a b\\cdot$\\blank{50}$=1$;\\\\\n2: $\\log_{a^m}N^n=$\\blank{50}($m,n\\in \\mathbf{R}$)."
},
"B00134": {
"lesson": "K0208",
"objs": [
"K0208002B"
],
"content": ", $[0,+\\infty)$\\blank{50}(); , ($0,+\\infty$)\\blank{50}.()"
},
"B00135": {
"lesson": "K0208",
"objs": [
"K0208003B"
],
"content": "\\blank{50}."
},
"B00136": {
"lesson": "K0208",
"objs": [
"K0208005B"
],
"content": ". : $y=\\dfrac{2 x+7}{x+3}$ $y=\\dfrac{1}{x}$ \\blank{200}, \\blank{100}\\blank{100}, \\blank{100}."
},
"B00137": {
"lesson": "K0209",
"objs": [
"K0209001B"
],
"content": " $a$ , \\blank{100}, $y=a^x$ $y$ , $a$ ."
},
"B00138": {
"lesson": "K0209",
"objs": [
"K0209002B"
],
"content": "\\blank{50}."
},
"B00139": {
"lesson": "K0210",
"objs": [
"K0210001B",
"K0210002B",
"K0210005B"
],
"content": ", :\n\\begin{center}\n\\begin{tabular}{|c|>{\\centering\\arraybackslash}p{5cm}|>{\\centering\\arraybackslash}p{5cm}|}\n\\hline\n$y=a^x$ & $a>1$ & $0<a<1$\\\\\n\\hline\n & \\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-1) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [dashed] (-2,0.5) node [above] {$y=$\\blank{10}}-- (2,0.5);\n\\end{tikzpicture} & \\begin{tikzpicture}[>=latex]\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-1) -- (0,3) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\draw [dashed] (-2,0.5) node [above] {$y=$\\blank{10}}-- (2,0.5);\n\\end{tikzpicture} \\\\\n\\hline\n\\multirow{3}{*}{} & \\multicolumn{2}{l|}{\\textcircled{1} $x$\\blank{30}, \\blank{80}$x$, \\blank{30}.}\\\\ \n\\cline{2-3} & \\multicolumn{2}{l|}{\\textcircled{2} \\blank{50}.} \\\\ \n\\cline{2-3} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}.} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}.} \\\\ \\hline\n\\multirow{3}{*}{} & \\multicolumn{2}{l|}{\\textcircled{1} \\blank{50}, \\blank{30}.}\\\\ \n\\cline{2-3} & \\multicolumn{2}{l|}{\\textcircled{2} $x=$\\blank{30}, $y=$\\blank{30}.} \\\\ \n\\cline{2-3} & \\multicolumn{1}{l|}{\\textcircled{3} $\\mathbf{R}$\\blank{50}.} & \\multicolumn{1}{l|}{\\textcircled{3} $\\mathbf{R}$\\blank{50}.} \\\\ \\hline\n\\end{tabular}\n\\end{center}"
},
"B00140": {
"lesson": "K0211",
"objs": [
"K0211002B"
],
"content": ", .\\\\\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (0,0) -- (4,0) node [right] {()};\n\\draw [->] (0,0) -- (0,4) node [above] {};\n\\draw [domain = 0:{ln(4)/ln(1.08)/8}] plot (\\x,{exp(8*\\x*ln(1.08))}) node [above] {\\textcircled{1}};\n\\draw [domain = 0:{ln(4)/ln(1.05)/8}] plot (\\x,{exp(8*\\x*ln(1.05))}) node [above] {\\textcircled{2}};\n\\draw (0,1.2) -- (4,2.5) node [right] {\\textcircled{3}};\n\\draw [domain = 0:4] plot (\\x,{3.5*exp(8*\\x*ln(0.95))}) node [right] {\\textcircled{4}};\n\\draw (0,1.8) -- (4,1.8) node [right] {\\textcircled{5}};\n\\draw (0,2.3) -- (4,1.3) node [right] {\\textcircled{6}};\n\\end{tikzpicture}\n\\end{center}\n(1) $5 \\%$: \\blank{30};\\\\\n(2) $8 \\%$: \\blank{30};\\\\\n(3) $5000$ : \\blank{30};\\\\\n(4) : \\blank{30};\\\\\n:\\blank{150}, \\blank{150}."
},
"B00141": {
"lesson": "K0212",
"objs": [
"K0212001B"
],
"content": " $a$ , \\blank{80}, $x$ $a$ $y$ \\blank{30}, $a$ ."
},
"B00142": {
"lesson": "K0212",
"objs": [
"K0212002B"
],
"content": "\\blank{50}."
},
"B00143": {
"lesson": "K0213",
"objs": [
"K0213005B",
"K0213006B"
],
"content": "\\blank{50}, \\blank{100}."
},
"B00144": {
"lesson": "K0213",
"objs": [
"K0213007B"
],
"content": ", :\n\\begin{center}\n\\begin{tabular}{|c|>{\\centering\\arraybackslash}p{5cm}|>{\\centering\\arraybackslash}p{5cm}|}\n\\hline\n$y=\\log_a x$ & $a>1$ & $0<a<1$\\\\\n\\hline\n & \\begin{tikzpicture}[>=latex]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\filldraw (0.5,0) node [below] {$1$};\n\\end{tikzpicture} & \\begin{tikzpicture}[>=latex]\n\\draw [->] (-1,0) -- (3,0) node [below] {$x$};\n\\draw [->] (0,-2) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\filldraw (0.5,0) node [below] {$1$};\n\\end{tikzpicture} \\\\\n\\hline\n\\multirow{3}{*}{} & \\multicolumn{2}{l|}{\\textcircled{1} $y$\\blank{30}, \\blank{80}$y$, \\blank{30}.}\\\\ \n\\cline{2-3} & \\multicolumn{2}{l|}{\\textcircled{2} \\blank{50}.} \\\\ \n\\cline{2-3} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}.} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}.} \\\\ \\hline\n\\multirow{3}{*}{} & \\multicolumn{2}{l|}{\\textcircled{1} \\blank{50}.}\\\\ \n\\cline{2-3} & \\multicolumn{2}{l|}{\\textcircled{2} $x=$\\blank{30}, $y=$\\blank{30}.} \\\\ \n\\cline{2-3} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}\\blank{30}.} & \\multicolumn{1}{l|}{\\textcircled{3} \\blank{30}\\blank{30}.} \\\\ \\hline\n\\end{tabular}\n\\end{center}"
},
"B00145": {
"lesson": "K0214",
"objs": [
"K0214002B"
],
"content": "$a>1$, $b\\in \\mathbf{R}$, $x$$\\log_a x>b$\\blank{50}.\\\\\n$\\log_a$\\blank{50}$=b$. $x\\in $\\blank{50}, $y=\\log_a x$\\blank{50}, $\\log_a x>b$, \\blank{50}$x$; $x\\in $\\blank{50}, $y=\\log_a x$\\blank{50}, $\\log_a x\\le b$, \\blank{50}$x$."
},
"B00146": {
"lesson": "K0214",
"objs": [
"K0214002B"
],
"content": "$0<a<1$, $b\\in \\mathbf{R}$, $x$$\\log_a x>b$\\blank{50}.\\\\\n$\\log_a$\\blank{50}$=b$. $x\\in $\\blank{50}, $y=\\log_a x$\\blank{50}, $\\log_a x>b$, \\blank{50}$x$; $x\\in $\\blank{50}, $y=\\log_a x$\\blank{50}, $\\log_a x\\le b$, \\blank{50}$x$."
},
"B00147": {
"lesson": "K0314",
"objs": [
"K0314001B"
],
"content": ": $S_{\\triangle}=$\\blank{50}$=$\\blank{50}$=$\\blank{50}."
},
"B00148": {
"lesson": "K0314",
"objs": [
"K0314002B"
],
"content": ": \\blank{50}$=$\\blank{50}$=$\\blank{50}."
},
"B00149": {
"lesson": "K0315",
"objs": [
"K0315001B",
"K0315002B"
],
"content": ": $a^2=$\\blank{100}; $b^2=$\\blank{100}; $c^2=$\\blank{100}."
},
"B00150": {
"lesson": "K0315",
"objs": [
"K0315001B",
"K0315002B"
],
"content": ": $\\cos A=$\\blank{50}; $\\cos B=$\\blank{50}; $\\cos C=$\\blank{50}."
},
"B00151": {
"lesson": "K0316",
"objs": [
"K0308003B"
],
"content": " $a \\in[0,1]$, $\\arcsin a$ \\blank{100}."
},
"B00152": {
"lesson": "K0316",
"objs": [
"K0308003B"
],
"content": " $a \\in[0,1]$, $\\arccos a$ \\blank{100}."
},
"B00153": {
"lesson": "K0316",
"objs": [
"K0308003B"
],
"content": " $a \\in[0,+\\infty)$, $\\arctan a$ \\blank{100}."
},
"B00154": {
"lesson": "K0317",
"objs": [
"K0317002B"
],
"content": ", : , , ."
},
"B00155": {
"lesson": "K0317",
"objs": [
"K0317002B"
],
"content": ", ."
},
"B00156": {
"lesson": "K0318",
"objs": [
"K0318001B"
],
"content": " $y=\\sin x$ \\blank{50}."
},
"B00157": {
"lesson": "K0318",
"objs": [
"K0318002B",
"K0318003B"
],
"content": " $y=\\sin x$, $x \\in[0,2 \\pi]$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\foreach \\i in {-1.5,-1,-0.5,0,0.5,1,1.5}\n{\\draw [gray!50, dashed] (0,\\i) -- (7,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\foreach \\i in {0,pi/2,pi,3*pi/2,2*pi}\n{\\draw [gray!50, dashed] (\\i,-1.5) -- (\\i,1.5);};\n\\draw (pi,0) node [below] {$\\pi$};\n\\draw [->] (0,0) -- (7,0) node [below] {$x$};\n\\draw [->] (0,-1.5) -- (0,1.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00158": {
"lesson": "K0318",
"objs": [
"K0318002B",
"K0318003B"
],
"content": " $y=\\sin x$, $x \\in \\mathbf{R}$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\foreach \\i in {-1.5,-1,-0.5,0,0.5,1,1.5}\n{\\draw [gray!50, dashed] (-7,\\i) -- (7,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\foreach \\i in {-2*pi,-3*pi/2,-pi,-pi/2,0,pi/2,pi,3*pi/2,2*pi}\n{\\draw [gray!50, dashed] (\\i,-1.5) -- (\\i,1.5);};\n\\draw (pi,0) node [below] {$\\pi$};\n\\draw [->] (-7,0) -- (7,0) node [below] {$x$};\n\\draw [->] (0,-1.5) -- (0,1.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00159": {
"lesson": "K0319",
"objs": [
"K0319003B"
],
"content": " $y=f(x)$, $T$, 使 $x$ $D$ \\blank{50}, \\blank{50}$\\in D$, \\blank{50} , $y=f(x)$ , $T$ $y=f(x)$ ."
},
"B00160": {
"lesson": "K0319",
"objs": [
"K0319002B",
"K0319003B"
],
"content": " $y=f(x)$, \\blank{50}, $y=f(x)$ ."
},
"B00161": {
"lesson": "K0319",
"objs": [
"K0319004B"
],
"content": " $y=\\sin x$ \\blank{50}."
},
"B00162": {
"lesson": "K0319",
"objs": [
"K0319005B"
],
"content": " $\\omega>0$, $\\varphi \\in \\mathbf{R}$, $y=\\sin (\\omega x+\\varphi)$ \\blank{50}."
},
"B00163": {
"lesson": "K0320",
"objs": [
"K0320001B"
],
"content": " $y=\\sin x$, $x \\in \\mathbf{R}$ \\blank{50}."
},
"B00164": {
"lesson": "K0320",
"objs": [
"K0320001B"
],
"content": " $y=\\sin x$, $x \\in \\mathbf{R}$ \\blank{50}, $x=$\\blank{100}; \\blank{50}, $x=$\\blank{100}."
},
"B00165": {
"lesson": "K0321",
"objs": [
"K0321001B"
],
"content": " $y=\\sin x$ \\blank{50}."
},
"B00166": {
"lesson": "K0321",
"objs": [
"K0321002B"
],
"content": " $y=\\sin x$ \\blank{50}(``''``'')."
},
"B00167": {
"lesson": "K0321",
"objs": [
"K0321002B"
],
"content": " $y=\\sin x$ \\blank{100}; \\blank{100}."
},
"B00168": {
"lesson": "K0322",
"objs": [
"K0322001B"
],
"content": " $y=\\cos x$ \\blank{50}."
},
"B00169": {
"lesson": "K0322",
"objs": [
"K0322002B"
],
"content": " $y=\\cos x$, $x \\in[0,2 \\pi]$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\foreach \\i in {-1.5,-1,-0.5,0,0.5,1,1.5}\n{\\draw [gray!50, dashed] (0,\\i) -- (7,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\foreach \\i in {0,pi/2,pi,3*pi/2,2*pi}\n{\\draw [gray!50, dashed] (\\i,-1.5) -- (\\i,1.5);};\n\\draw (pi,0) node [below] {$\\pi$};\n\\draw [->] (0,0) -- (7,0) node [below] {$x$};\n\\draw [->] (0,-1.5) -- (0,1.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00170": {
"lesson": "K0322",
"objs": [
"K0322002B"
],
"content": " $y=\\cos x$, $x \\in \\mathbf{R}$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\foreach \\i in {-1.5,-1,-0.5,0,0.5,1,1.5}\n{\\draw [gray!50, dashed] (-7,\\i) -- (7,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\foreach \\i in {-2*pi,-3*pi/2,-pi,-pi/2,0,pi/2,pi,3*pi/2,2*pi}\n{\\draw [gray!50, dashed] (\\i,-1.5) -- (\\i,1.5);};\n\\draw (pi,0) node [below] {$\\pi$};\n\\draw [->] (-7,0) -- (7,0) node [below] {$x$};\n\\draw [->] (0,-1.5) -- (0,1.5) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00171": {
"lesson": "K0322",
"objs": [
"K0322002B"
],
"content": ":\n\\begin{center}\n\\begin{tabular}{|c|p{25em}|}\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00172": {
"lesson": "K0323",
"objs": [
"K0323003B"
],
"content": "``'': $y=A \\sin (\\omega x+\\varphi)$($A>0$, $\\omega>0$) , ``''\\blank{200}."
},
"B00173": {
"lesson": "K0323",
"objs": [
"K0323003B"
],
"content": " $y=A \\sin (\\omega x+\\varphi)$($A>0$, $\\omega>0$) .\\\\\n(1) $A>1$ , $y=\\sin x$ \\blank{50}; $0<A<1$ , $y=\\sin x$ \\blank{50}, $y=A \\sin x$ .\\\\\n(2) $\\omega>1$ , $y=\\sin x$ \\blank{50}; $0<\\omega<1$, $y=\\sin x$ \\blank{50}, $y=\\sin \\omega x$ .\\\\\n(3) $\\varphi>0$ , $y=\\sin x$ \\blank{50}\\blank{50}; $\\varphi<0$ , $y=\\sin x$ \\blank{50}\\blank{50}, $y=\\sin (x+\\varphi)$ ."
},
"B00174": {
"lesson": "K0323",
"objs": [
"K0320331B"
],
"content": " $y=A \\sin (\\omega x+\\varphi)$($A>0$, $\\omega>0$) \\blank{50}, $T$ \\blank{50}, $f$ \\blank{50}, \\blank{50}, \\blank{50}, \\blank{50}."
},
"B00175": {
"lesson": "K0324",
"objs": [
"K0324001B"
],
"content": " $y=\\tan x$ \\blank{100}."
},
"B00176": {
"lesson": "K0324",
"objs": [
"K0324002B",
"K0324003B"
],
"content": " $y=\\tan x$, $x \\in(-\\dfrac{\\pi}{2}, \\dfrac{\\pi}{2})$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.5]\n\\foreach \\i in {-pi/2,0,pi/2}\n{\\draw [gray!50,dashed] (\\i,-4) -- (\\i,4);};\n\\draw (pi/2,0) node [below] {$\\frac{\\pi}{2}$};\n\\foreach \\i in {-4,-3,-2,-1,0,1,2,3,4}\n{\\draw [gray!50,dashed] (-2,\\i) -- (2,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\draw [->] (-2,0) -- (2,0) node [below] {$x$};\n\\draw [->] (0,-4) -- (0,4) node [left] {$y$};\n\\draw (0,0) node [below right] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00177": {
"lesson": "K0324",
"objs": [
"K0324002B",
"K0324003B"
],
"content": " $y=\\tan x$ :\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 0.5]\n\\foreach \\i in {-2*pi,-1.5*pi,-pi,-pi/2,0,pi/2,pi,1.5*pi,2*pi}\n{\\draw [gray!50,dashed] (\\i,-4) -- (\\i,4);};\n\\draw (pi/2,0) node [below] {$\\frac{\\pi}{2}$};\n\\foreach \\i in {-4,-3,-2,-1,0,1,2,3,4}\n{\\draw [gray!50,dashed] (-7,\\i) -- (7,\\i);};\n\\draw (0,1) node [left] {$1$};\n\\draw [->] (-7,0) -- (7,0) node [below] {$x$};\n\\draw [->] (0,-4) -- (0,4) node [left] {$y$};\n\\draw (0,0) node [below right] {$O$};\n\\end{tikzpicture}\n\\end{center}"
},
"B00178": {
"lesson": "K0324",
"objs": [
"K0324004B",
"K0324005B",
"K0324006B"
],
"content": ":\n\\begin{center}\n\\begin{tabular}{|c|p{20em}|}\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00179": {
"lesson": "K0501",
"objs": [
"K0501001B"
],
"content": "(): ;\\\\\n: ; : , ."
},
"B00180": {
"lesson": "K0501",
"objs": [
"K0501001B"
],
"content": "线: 线. : 线, 线, 线."
},
"B00181": {
"lesson": "K0501",
"objs": [
"K0501002B"
],
"content": ": ($\\overrightarrow{a}$), ($\\overrightarrow{AB}$)."
},
"B00182": {
"lesson": "K0501",
"objs": [
"K0501003B"
],
"content": ": , ; $0$ , $\\overrightarrow{0}$, ; $1$ ."
},
"B00183": {
"lesson": "K0501",
"objs": [
"K0501004B"
],
"content": ": ; : ."
},
"B00184": {
"lesson": "K0501",
"objs": [
"K0501005B",
"K0501006B"
],
"content": ": ; .\\\\\n() : ; ."
},
"B00185": {
"lesson": "K0502",
"objs": [
"K0502001B",
"K0502002B",
"K0502003B",
"K0502004B"
],
"content": ": ; ; ."
},
"B00186": {
"lesson": "K0502",
"objs": [
"K0502005B",
"K0502006B"
],
"content": ": , ."
},
"B00187": {
"lesson": "K0503",
"objs": [
"K0503001B"
],
"content": "(): $\\lambda$ $\\overrightarrow{a}$ , $\\lambda \\overrightarrow{a}$. $|\\lambda \\overrightarrow{a}|=|\\lambda||\\overrightarrow{a}|$; $\\lambda>0$ , $\\lambda \\overrightarrow{a}$ $\\overrightarrow{a}$ , $\\lambda<0$ , $\\lambda \\overrightarrow{a}$ $\\overrightarrow{a}$ . , $\\overrightarrow{a}=\\overrightarrow{0}$ $\\lambda=0$ , $\\lambda \\overrightarrow{a}=\\overrightarrow{0}$."
},
"B00188": {
"lesson": "K0503",
"objs": [
"K0503001B"
],
"content": " $\\overrightarrow{b}$ $\\overrightarrow{a}$ : $\\lambda$, 使 $\\overrightarrow{b}=\\lambda \\overrightarrow{a}$."
},
"B00189": {
"lesson": "K0503",
"objs": [
"K0503003B"
],
"content": " $\\overrightarrow{a}$ : $\\overrightarrow{a}$ , $\\overrightarrow{a_0}$, $\\overrightarrow{a_0}=\\dfrac{1}{|\\overrightarrow{a}|}\\overrightarrow{a}$."
},
"B00190": {
"lesson": "K0503",
"objs": [
"K0503004B"
],
"content": "线: ;\\\\\n线: , 线."
},
"B00191": {
"lesson": "K0504",
"objs": [
"K0503003B"
],
"content": ": $\\overrightarrow{AB}$ $A$ $B$ 线 $l$ $A'$ $B'$, $\\overrightarrow{A'B'}$ $\\overrightarrow{AB}$ 线 $l$ , ."
},
"B00192": {
"lesson": "K0504",
"objs": [
"K0503001B"
],
"content": ": $O$ , $\\overrightarrow{OA}=\\overrightarrow{a}$, $\\overrightarrow{OB}=\\overrightarrow{b}$, 线 $OA$$OB$ $\\overrightarrow{a}\\cdot \\overrightarrow{b}$ , $\\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle$, $[0, \\pi]$. , $\\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle=\\dfrac{\\pi}{2}$ , $\\overrightarrow{a}\\cdot \\overrightarrow{b}$ , $\\overrightarrow{a}\\perp \\overrightarrow{b}$."
},
"B00193": {
"lesson": "K0504",
"objs": [
"K0503002B",
"K0504001B"
],
"content": ": $|\\overrightarrow{b}| \\cos \\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle$ $\\overrightarrow{b}$ $\\overrightarrow{a}$ , ."
},
"B00194": {
"lesson": "K0504",
"objs": [
"K0503003B",
"K0503005B"
],
"content": ", $0$."
},
"B00195": {
"lesson": "K0504",
"objs": [
"K0503006B"
],
"content": ": $\\overrightarrow{a}$ $\\overrightarrow{b}$ , $\\overrightarrow{a}$ $\\overrightarrow{b}$ $\\overrightarrow{a}\\cdot \\overrightarrow{b}=|\\overrightarrow{a}||\\overrightarrow{b}| \\cos \\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle$. , ``$\\cdot$'', ``$\\times$''. $0$, $0$."
},
"B00196": {
"lesson": "K0504",
"objs": [
"K0503006B"
],
"content": ": $\\overrightarrow{a}^2=\\overrightarrow{a}\\cdot \\overrightarrow{a}=|\\overrightarrow{a}|^2$."
},
"B00197": {
"lesson": "K0505",
"objs": [
"K0505003B"
],
"content": ": $\\overrightarrow{a}$ $\\overrightarrow{b}, \\overrightarrow{c}$ , $\\lambda$ , :\\\\\n(1) : $\\overrightarrow{a}\\cdot \\overrightarrow{b}=\\overrightarrow{b}\\cdot \\overrightarrow{a}$;\\\\\n(2) : $(\\lambda \\overrightarrow{a}) \\cdot \\overrightarrow{b}=\\overrightarrow{a}\\cdot(\\lambda \\overrightarrow{b})$;\\\\\n(3) : $\\overrightarrow{a}\\cdot(\\overrightarrow{b}+\\overrightarrow{c})=\\overrightarrow{a}\\cdot \\overrightarrow{b}+\\overrightarrow{a}\\cdot \\overrightarrow{c}$."
},
"B00198": {
"lesson": "K0505",
"objs": [
"K0505005B"
],
"content": ": $\\cos \\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle=\\dfrac{\\overrightarrow{a}\\cdot \\overrightarrow{b}}{|\\overrightarrow{a}||\\overrightarrow{b}|}$."
},
"B00199": {
"lesson": "K0505",
"objs": [
"K0505001B"
],
"content": "$\\overrightarrow{a}$$\\overrightarrow{b}$, $\\overrightarrow{a}\\perp \\overrightarrow{b}\\Leftrightarrow \\overrightarrow{a}\\cdot \\overrightarrow{b}=0$."
},
"B00200": {
"lesson": "K0505",
"objs": [
"K0505002B"
],
"content": "$\\overrightarrow{a}$$\\overrightarrow{b}$, $|\\overrightarrow{a}\\cdot \\overrightarrow{b}| \\leq|\\overrightarrow{a}||\\overrightarrow{b}|$, $\\overrightarrow{a}\\parallel \\overrightarrow{b}$ .\\\\\n $\\overrightarrow{a}$$\\overrightarrow{b}$(), $\\overrightarrow{a}\\cdot \\overrightarrow{b}=|\\overrightarrow{a}||\\overrightarrow{b}|$; , $\\overrightarrow{a}^2=|\\overrightarrow{a}|^2$.\\\\\n $\\overrightarrow{a}$$\\overrightarrow{b}$(), $\\overrightarrow{a}\\cdot \\overrightarrow{b}=-|\\overrightarrow{a}||\\overrightarrow{b}|$."
},
"B00201": {
"lesson": "K0506",
"objs": [
"K0506001B"
],
"content": ": $\\overrightarrow{e_1}\\cdot \\overrightarrow{e_2}$ , $\\overrightarrow{a}$, $\\overrightarrow{e_1}\\cdot \\overrightarrow{e_2}$ 线, $\\lambda$$\\mu$,使 $\\overrightarrow{a}=\\lambda \\overrightarrow{e_1}+\\mu \\overrightarrow{e_2}$."
},
"B00202": {
"lesson": "K0506",
"objs": [
"K0506002B"
],
"content": ": , 线, .\\\\\n: ."
},
"B00203": {
"lesson": "K0507",
"objs": [
"K0507001B",
"K0507002B"
],
"content": "$\\overrightarrow{a}$ $\\overrightarrow{e_1}$$\\overrightarrow{e_2}$ : $\\overrightarrow{a}$ $\\overrightarrow{e_1}$$\\overrightarrow{e_2}$ 线. , $\\overrightarrow{e_1}\\perp \\overrightarrow{e_2}$ , $\\overrightarrow{a}$ $\\overrightarrow{e_1}$$\\overrightarrow{e_2}$ $\\overrightarrow{a}$ ."
},
"B00204": {
"lesson": "K0507",
"objs": [
"K0507003B"
],
"content": " $\\overrightarrow{a}$ : $\\overrightarrow{i}, \\overrightarrow{j}$ $x$ $y$ , $\\overrightarrow{a}$ $\\overrightarrow{i}, \\overrightarrow{j}$ $\\overrightarrow{a}=x \\overrightarrow{i}+y \\overrightarrow{j}$ $\\overrightarrow{a}$ , $\\overrightarrow{a}=(x, y)$ $\\overrightarrow{a}$ ."
},
"B00205": {
"lesson": "K0507",
"objs": [
"K0507004B",
"K0507005B",
"K0507008B"
],
"content": " $\\overrightarrow{a}$ : $A$ $(x, y)$, $O$ $\\overrightarrow{OA}=\\overrightarrow{a}=(x, y)$ $\\overrightarrow{a}$ , $|\\overrightarrow{a}|=|(x, y)|=\\sqrt{x^2+y^2}$."
},
"B00206": {
"lesson": "K0507",
"objs": [
"K0507006B",
"K0507007B"
],
"content": "线: $(x_1, y_1)$$(x_2, y_2)$ , $\\lambda$ , :\\\\\n(1) $(x_1, y_1) \\pm(x_2, y_2)=(x_1 \\pm x_2, y_1 \\pm y_2)$;\\\\\n(2) $\\lambda(x, y)=(\\lambda x, \\lambda y)$."
},
"B00207": {
"lesson": "K0507",
"objs": [
"K0507005B",
"K0507007B"
],
"content": ":\n $P(x_1, y_1)$$Q(x_2, y_2)$, $\\overrightarrow{OP}=(x_1, y_1)$$\\overrightarrow{OQ}=(x_2, y_2)$, $\\overrightarrow{PQ}=\\overrightarrow{OQ}-\\overrightarrow{OP}=(x_2, y_2)-(x_1, y_1)=(x_2-x_1, y_2-y_1)$."
},
"B00208": {
"lesson": "K0508",
"objs": [
"K0508001B"
],
"content": ": $\\overrightarrow{a}=(x_1, y_1)$, $\\overrightarrow{b}=(x_2, y_2)$, \n$\\overrightarrow{a}\\cdot \\overrightarrow{b}=(x_1, y_1) \\cdot(x_2, y_2)=(x_1 \\overrightarrow{i}+y_1 \\overrightarrow{j}) \\cdot(x_2 \\overrightarrow{i}+y_2 \\overrightarrow{j}) =(x_1 x_2) \\overrightarrow{i}^2+(x_1 y_2+x_2 y_1) \\overrightarrow{i}\\cdot \\overrightarrow{j}+(y_1 y_2) \\overrightarrow{j}^2$, $\\overrightarrow{i}\\perp \\overrightarrow{j}$, $\\overrightarrow{i}\\cdot \\overrightarrow{j}=0$, $|\\overrightarrow{i}|=|\\overrightarrow{j}|=1$, $\\overrightarrow{a}\\cdot \\overrightarrow{b}=x_1 x_2+y_1 y_2$."
},
"B00209": {
"lesson": "K0508",
"objs": [
"K0508002B",
"K0508003B"
],
"content": ": $\\cos \\langle\\overrightarrow{a}, \\overrightarrow{b}\\rangle=\\dfrac{\\overrightarrow{a}\\cdot \\overrightarrow{b}}{|\\overrightarrow{a}||\\overrightarrow{b}|}=\\dfrac{x_1 x_2+y_1 y_2}{\\sqrt{x_1^2+y_1^2}\\cdot \\sqrt{x_2^2+y_2^2}}$."
},
"B00210": {
"lesson": "K0508",
"objs": [
"K0508004B",
"K0508005B"
],
"content": " $\\overrightarrow{a}=(x_1, y_1)$, $\\overrightarrow{b}=(x_2, y_2)$ , :\\\\\n(1) $\\overrightarrow{a}\\perp \\overrightarrow{b}\\Leftrightarrow x_1 x_2+y_1 y_2=0$;\\\\\n(2) $\\overrightarrow{a}\\parallel \\overrightarrow{b}\\Leftrightarrow x_1 y_2=x_2 y_1$."
},
"B00211": {
"lesson": "K0509",
"objs": [
"K0509002B"
],
"content": "线: $P$ 线 $P_1P_2$ , $\\overrightarrow{P_1P}=\\lambda \\overrightarrow{PP_2}$($\\lambda$ , $\\lambda \\neq-1$), $P_1(x_1, y_1)$, $P_2(x_2, y_2)$, $P(x, y)$, $x=\\dfrac{x_1+\\lambda x_2}{1+\\lambda}$, $y=\\dfrac{y_1+\\lambda y_2}{1+\\lambda}$. , $\\lambda=1$ , $P$线 $P_1P_2$ , $x=\\dfrac{x_1+x_2}{2}$, $y=\\dfrac{y_1+y_2}{2}$."
},
"B00212": {
"lesson": "K0509",
"objs": [
"K0509004B"
],
"content": ": $\\triangle ABC$ , $\\overrightarrow{CA}=\\overrightarrow{a}=(x_1, y_1)$, $\\overrightarrow{CB}=\\overrightarrow{b}=(x_2, y_2)$, $\\triangle ABC$ $S$, $S=\\dfrac{1}{2}\\sqrt{\\overrightarrow{a}^2 \\cdot \\overrightarrow{b}^2-(\\overrightarrow{a}\\cdot \\overrightarrow{b})^2}=\\dfrac{1}{2}|x_1 y_2-x_2 y_1|$."
},
"B00213": {
"lesson": "K0227",
"objs": [
"K0227001X",
"K0227002X",
"K0227003X"
],
"content": " $y=f(x)$, $x_0$, $x_0$ $h$, $h$ 0 , $f(x_0+h)-f(x_0)$ $h$ \\blank{100}, , $\\dfrac{f(x_0+h)-f(x_0)}{h}$ $h$ $0$ \\blank{50}, $\\displaystyle\\lim _{h \\to 0}\\dfrac{f(x_0+h)-f(x_0)}{h}$. $y=f(x)$ $x=x_0$ \\blank{50}, $f'(x_0)$ , \\blank{100}."
},
"B00214": {
"lesson": "K0227",
"objs": [
"K0227003X",
"K0227004X"
],
"content": "$\\dfrac{f(x_0+h)-f(x_0)}{h}$ $y=f(x)$ $[x_0, x_0+h]$ \\blank{50};\\\\\n$f'(x_0)=\\displaystyle\\lim _{h \\to 0}\\dfrac{f(x_0+h)-f(x_0)}{h}$ $y=f(x)$ $x=x_0$ \\blank{50}."
},
"B00215": {
"lesson": "K0228",
"objs": [
"K0228001X"
],
"content": "线线线\\blank{50}."
},
"B00216": {
"lesson": "K0228",
"objs": [
"K0228001X"
],
"content": "线 $P$, $P$ 线 $PQ$ 线 $PQ$. $Q$ $P$ , 线 $PQ$ 线, 线线 $P$ \\blank{50}."
},
"B00217": {
"lesson": "K0228",
"objs": [
"K0228001X",
"K0228003X"
],
"content": " $y=f(x)$ $x=x_0$ $f'(x_0)$ 线 $y=f(x)$ $P(x_0, f(x_0))$ 线\\blank{50}. 线\\blank{100}."
},
"B00218": {
"lesson": "K0228",
"objs": [
"K0228005X"
],
"content": "\\blank{50}."
},
"B00219": {
"lesson": "K0228",
"objs": [
"K0228005X"
],
"content": "线线\\blank{50}线."
},
"B00220": {
"lesson": "K0229",
"objs": [
"K0229001X"
],
"content": " $y=f(x)$ , , $x_0$, $f'(x_0)$. $f'(x)$ $x$ , $f(x)$ \\blank{40} (\\blank{30}), $f'(x)=$\\blank{80}. () \\blank{50}."
},
"B00221": {
"lesson": "K0229",
"objs": [
"K0229002X",
"K0229004X",
"K0229006X"
],
"content": ":\\\\\n\\begin{tabular}{ll}\n(1) $(C)'=$\\blank{50}($C$) & (2) $(x^\\alpha)'=$\\blank{50} ($\\alpha$ );\\\\\n(3) $(\\mathrm{e}^x)'=$\\blank{50} ($\\mathrm{e}$ );& (4) $(\\ln x)'=$\\blank{50};\\\\\n(5) $(\\sin x)'=$\\blank{50}; & (6) $(\\cos x)'=$\\blank{50}.\n\\end{tabular}"
},
"B00222": {
"lesson": "K0230",
"objs": [
"K0230001X",
"K0230002X",
"K0230003X"
],
"content": ":\\\\\n(1) $(f(x) \\pm g(x))'=$\\blank{100}.\\\\\n(2) $(f(x) g(x))'=$\\blank{100}; , $C$, $(C f(x))'=$\\blank{100}.\\\\\n(3) $(\\dfrac{f(x)}{g(x)})'=$\\blank{100}($g(x) \\neq 0$)."
},
"B00223": {
"lesson": "K0230",
"objs": [
"K0230005X"
],
"content": ": $a>0$ $a \\neq 1$, : $(\\log _a x)'=$\\blank{50}."
},
"B00224": {
"lesson": "K0231",
"objs": [
"K0231001X"
],
"content": " $u=g(x)$ $u$ $x$ $u=g(x)$, $y$ $x$ \\blank{50}, \\blank{50}."
},
"B00225": {
"lesson": "K0231",
"objs": [
"K0231002X"
],
"content": "$y=f(a x+b)$ : $y=f(a x+b)$ $y=f(u)$ $u=a x+b$ , $(f(a x+b))'=$\\blank{50}, $u=$\\blank{50}."
},
"B00226": {
"lesson": "K0231",
"objs": [
"K0231004X"
],
"content": ": $a>0$ $a \\neq 1$, : $(a^x)'=$\\blank{50}."
},
"B00227": {
"lesson": "K0232",
"objs": [
"K0232001X"
],
"content": " $I$ , \\blank{50}, $y=f(x)$ ; \\blank{50}, $y=f(x)$ ."
},
"B00228": {
"lesson": "K0232",
"objs": [
"K0232004X"
],
"content": ", ``'', \\blank{20}."
},
"B00229": {
"lesson": "K0233",
"objs": [
"K0233001X"
],
"content": ": $x=x_1$ , () $f(x_1)$. $y=f(x)$ $x=x_1$ \\blank{50}(\\blank{50})$f(x_1)$, $x_1$ $y=f(x)$ \\blank{50}(\\blank{50});\n\\\\\\blank{50}, \\blank{50}."
},
"B00230": {
"lesson": "K0233",
"objs": [
"K0233002X"
],
"content": ":\\\\\n\\textcircled{1} $f'(x)=0$ $y=f(x)$ \\blank{50};\\\\\n\\textcircled{2} $x=x_0$ $y=f(x)$ .\\\\\n(a) $x_0$ \\blank{50}, $x_0$ \\blank{50}, $y=f(x)$ $x_0$ ; \\\\\n(b) $x_0$ \\blank{50}, $x_0$ \\blank{50}, $y=f(x)$ $x_0$ ."
},
"B00231": {
"lesson": "K0234",
"objs": [
"K0234003X"
],
"content": " $y=f(x)$ $[a, b]$ , $(a, b)$ , :\\\\\n\\textcircled{1} $f'(x)=0$ $x \\in(a, b)$ $f(x)$ \\blank{100};\\\\\n\\textcircled{2} \\textcircled{1}\\blank{50}, , .\n, ."
},
"B00232": {
"lesson": "K0235",
"objs": [
"K0235001X"
],
"content": "\\blank{50}, ."
},
"B00233": {
"lesson": "K0301",
"objs": [
"K0301002B"
],
"content": ", :\n\\begin{center}\n\\begin{tabular}{|c|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|p{0.15\\textwidth}<{\\centering}|}\\hline $\\alpha$ & $\\sin \\alpha$ & $\\cos \\alpha$ & $\\tan \\alpha$ & $\\cot \\alpha$ \\\\\n\\hline $30^{\\circ}$ & & & & \\\\\n\\hline $45^{\\circ}$ & & & & \\\\\n\\hline $60^{\\circ}$ & & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00234": {
"lesson": "K0301",
"objs": [
"K0301001B",
"K0301003B"
],
"content": "线\\blank{50}, ; 线\\blank{50}, ; 线, , \\blank{50}."
},
"B00235": {
"lesson": "K0301",
"objs": [
"K0301004B"
],
"content": " $\\alpha$ ( $\\alpha$ )\\blank{100}."
},
"B00236": {
"lesson": "K0302",
"objs": [
"K0302001B"
],
"content": "\\blank{50} $1$ , ``\\blank{50}''."
},
"B00237": {
"lesson": "K0302",
"objs": [
"K0302001B"
],
"content": "$1^{\\circ}=$\\blank{50}, $1$ $=$\\blank{50}.\n\\begin{center}\n\\begin{tabular}{|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|p{0.05\\textwidth}<{\\centering}|}\n\\hline & $0^{\\circ}$ & $30^{\\circ}$ & $45^{\\circ}$ & $60^{\\circ}$ & & & $135^{\\circ}$ & & $180^{\\circ}$ & $270^{\\circ}$ & $360^{\\circ}$ \\\\\n\\hline & & & & & $\\dfrac{\\pi}{2}$ & $\\dfrac{2 \\pi}{3}$ & & $\\dfrac{5 \\pi}{6}$ & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00238": {
"lesson": "K0302",
"objs": [
"K0302002B"
],
"content": " $r$, $l$, $\\alpha$($0<\\alpha<2 \\pi$), $l=$\\blank{50}, $S=$\\blank{50}."
},
"B00239": {
"lesson": "K0303",
"objs": [
"K0303001B"
],
"content": ", $\\alpha$ $P$, $P$ $(x, y)$, $|OP|=r$, $r=\\sqrt{x^2+y^2}$($r>0$), :\n$\\sin \\alpha=$\\blank{50}, $\\cos \\alpha=$\\blank{50},\\\\\n$\\tan \\alpha=$\\blank{50}($\\alpha \\neq$\\blank{50}, $k\\in \\mathbf{Z}$),\\\\\n$\\cot \\alpha=$\\blank{50}($\\alpha \\neq$\\blank{50}, $k\\in \\mathbf{Z}$).\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-0.5,0) -- (2,0) node [below] {$x$} coordinate (x);\n\\draw [->] (0,-0.5) -- (0,1.6) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\draw (0,0) -- (50:2);\n\\draw (50:1.5) node [right] {$P(x,y)$} coordinate (P);\n\\draw ($(O)!(P)!(x)$) node [below] {$M$} coordinate (M);\n\\draw (P)--(M) node [midway, right] {$y$};\n\\path (O) -- (P) node [midway, above left] {$r$};\n\\path (O) -- (M) node [midway, below] {$x$};\n\\draw pic [draw, \"$\\alpha$\", scale = 0.6, ->, angle eccentricity = 1.8] {angle = x--O--P};\n\\end{tikzpicture}\n\\end{center}"
},
"B00240": {
"lesson": "K0303",
"objs": [
"K0303002B"
],
"content": "在下表中填写相应的符号(``$+$''或``$-$''):\n\\begin{center}\n\\begin{tabular}{|c|c|c|c|c|c|c|}\n\\hline $\\alpha$所在象限 & $P$的横坐标$x$ & $P$的纵坐标$y$ & $\\sin \\alpha$ & $\\cos \\alpha$ & $\\tan \\alpha$ & $\\cot \\alpha$ \\\\\n\\hline 第一象限 & & & & & & \\\\\n\\hline 第二象限 & & & & & & \\\\\n\\hline 第三象限 & & & & & & \\\\\n\\hline 第四象限 & & & & & & \\\\\n\\hline\n\\end{tabular}\n\\end{center}"
},
"B00241": {
"lesson": "K0304",
"objs": [
"K0304001B"
],
"content": "若角 $\\alpha$ 的终边与以原点为圆心的单位圆交于唯一的一点 $P(x, y)$, 则点 $P$ 的坐标用 $\\alpha$ 的三角比表示为\\blank{50}."
},
"B00242": {
"lesson": "K0304",
"objs": [
"K0304002B"
],
"content": "同角的三角比关系: \\\\\n(1) $\\sin ^2 \\alpha+\\cos ^2 \\alpha=$\\blank{50};\\\\\n(2) $\\dfrac{\\sin \\alpha}{\\cos \\alpha}= $\\blank{50};($\\cos \\alpha \\neq 0$)\\\\\n(3) $\\dfrac{\\cos \\alpha}{\\sin \\alpha}= $\\blank{50};($\\sin \\alpha \\neq 0$)\\\\\n(4) $\\tan \\alpha \\cdot \\cot \\alpha=1$."
},
"B00243": {
"lesson": "K0305",
"objs": [
"K0305001B"
],
"content": "$(\\sin \\alpha \\pm \\cos \\alpha)^2=1 \\pm$\\blank{100}."
},
"B00244": {
"lesson": "K0305",
"objs": [
"K0305001B"
],
"content": "$\\sin \\alpha \\cdot \\cos \\alpha=$\\blank{100}.(用 $\\tan \\alpha$ 表示)."
},
"B00245": {
"lesson": "K0306",
"objs": [
"K0306001B",
"K0306002B"
],
"content": "与``终边重合''有关的诱导公式:\\\\\n当 $k \\in \\mathbf{Z}$ 时, $\\sin (\\alpha+2 k \\pi)=$\\blank{50}; $\\cos (\\alpha+2 k \\pi)=$\\blank{50}; $\\tan (\\alpha+2 k \\pi)=$\\blank{50}; $\\cot (\\alpha+2 k \\pi)=$\\blank{50}."
},
"B00246": {
"lesson": "K0306",
"objs": [
"K0306001B",
"K0306002B"
],
"content": "与``关于$x$轴成轴对称''有关的诱导公式:\\\\\n$\\sin (-\\alpha)=$\\blank{50}; $\\cos(-\\alpha)=$\\blank{50}; $\\tan (-\\alpha)=$\\blank{50}; $\\cot(-\\alpha)=$\\blank{50}."
},
"B00247": {
"lesson": "K0306",
"objs": [
"K0306001B",
"K0306002B"
],
"content": "与``关于原点成中心对称''有关的诱导公式:\\\\\n$\\sin (\\pi+\\alpha)=$\\blank{50}; $\\cos (\\pi+\\alpha)=$\\blank{50}; $\\tan (\\pi+\\alpha)=$\\blank{50}; $\\cot (\\pi+\\alpha)=$\\blank{50}."
},
"B00248": {
"lesson": "K0306",
"objs": [
"K0306001B",
"K0306002B"
],
"content": "与``关于$y$轴成轴对称''有关的诱导公式:\\\\\n$\\sin (\\pi-\\alpha)=$\\blank{50}; $\\cos (\\pi-\\alpha)=$\\blank{50}; $\\tan (\\pi-\\alpha)=$\\blank{50}; $\\cot (\\pi-\\alpha)=$\\blank{50}."
},
"B00249": {
"lesson": "K0307",
"objs": [
"K0307001B",
"K0307003B"
],
"content": "与``关于直线$y=x$成轴对称''有关的诱导公式:\\\\\n$\\sin (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}; $\\cos (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}; $\\tan (\\dfrac{\\pi}{2}-\\alpha)=\\blank{50}$; $\\cot (\\dfrac{\\pi}{2}-\\alpha)=$\\blank{50}."
},
"B00250": {
"lesson": "K0307",
"objs": [
"K0307001B",
"K0307003B"
],
"content": "与``旋转$90^\\circ$''有关的诱导公式:\\\\\n$\\sin (\\dfrac{\\pi}{2}+\\alpha)=\\blank{50}$; $\\cos (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}; $\\tan (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}; $\\cot (\\dfrac{\\pi}{2}+\\alpha)=$\\blank{50}."
},
"B00251": {
"lesson": "K0308",
"objs": [
"K0308002B"
],
"content": "满足 $\\sin x=\\sin \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
},
"B00252": {
"lesson": "K0308",
"objs": [
"K0308002B"
],
"content": "满足 $\\cos x=\\cos \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
},
"B00253": {
"lesson": "K0308",
"objs": [
"K0308002B"
],
"content": "满足 $\\tan x=\\tan \\alpha$ 的角 $x$ 的全体组成的集合为\\blank{50}."
},
"B00254": {
"lesson": "K0309",
"objs": [
"K0309001B"
],
"content": "两角差的余弦公式: $\\cos (\\alpha-\\beta)=$\\blank{50}."
},
"B00255": {
"lesson": "K0309",
"objs": [
"K0309002B"
],
"content": "两角和的余弦公式: $\\cos (\\alpha+\\beta)=$\\blank{50}."
},
"B00256": {
"lesson": "K0310",
"objs": [
"K0310001B"
],
"content": "两角和与差的正弦公式: $\\sin (\\alpha \\pm \\beta)=$\\blank{50}."
},
"B00257": {
"lesson": "K0310",
"objs": [
"K0310001B"
],
"content": "两角和与差的正切公式: $\\tan (\\alpha \\pm \\beta)=$\\blank{50}."
},
"B00258": {
"lesson": "K0311",
"objs": [
"K0311002B"
],
"content": "辅助角公式: 已知$a,b$不全为$0$, 则$a \\sin \\alpha+b \\cos \\alpha=$\\blank{50}$\\sin$\\blank{50}, 其中辅助角 $\\varphi$ 满足\n$\\cos \\varphi=$\\blank{50}, $\\sin \\varphi=$\\blank{50}."
},
"B00259": {
"lesson": "K0312",
"objs": [
"K0312001B"
],
"content": "二倍角的正弦公式: $\\sin 2 \\alpha=$\\blank{50}."
},
"B00260": {
"lesson": "K0312",
"objs": [
"K0312001B",
"K0312002B"
],
"content": "二倍角的余弦公式: $\\cos 2 \\alpha=$\\blank{50}$=$\\blank{50}$=$\\blank{50}."
},
"B00261": {
"lesson": "K0312",
"objs": [
"K0312001B"
],
"content": "二倍角的正切公式: $\\tan 2 \\alpha=$\\blank{50}."
},
"B00262": {
"lesson": "K0312",
"objs": [
"K0312003B"
],
"content": "常用降次公式:\\\\\n(1) $\\sin ^2 \\alpha=$\\blank{50}, $\\cos ^2 \\alpha=$\\blank{50};\\\\\n(2) $(\\sin \\alpha \\pm \\cos \\alpha)^2=$\\blank{50}."
},
"B00263": {
"lesson": "K0313",
"objs": [
"K0313001B"
],
"content": "半角公式: \\\\\n$\\sin \\dfrac{\\alpha}{2}=$\\blank{50}, $\\cos \\dfrac{\\alpha}{2}=$\\blank{50}, $\\tan \\dfrac{\\alpha}{2}=$\\blank{50}."
},
"B00264": {
"lesson": "K0313",
"objs": [
"K0313002B"
],
"content": "积化和差公式:\\\\\n$\\sin\\alpha\\cos\\beta=$\\blank{100}, $\\cos\\alpha\\sin\\beta=$\\blank{100},\\\\\n$\\cos\\alpha\\cos\\beta=$\\blank{100}, $\\sin\\alpha\\sin\\beta=$\\blank{100}."
},
"B00265": {
"lesson": "K0313",
"objs": [
"K0313003B"
],
"content": "和差化积公式:\\\\\n$\\sin \\alpha+\\sin \\beta=$\\blank{100}, $\\sin \\alpha-\\sin \\beta=$\\blank{100},\\\\\n$\\cos \\alpha+\\cos \\beta=$\\blank{100}, $\\cos \\alpha-\\cos \\beta=$\\blank{100}."
},
"B00266": {
"lesson": "K0511",
"objs": [
"K0511002B",
"K0511003B"
],
"content": "复数的定义: 形如\\blank{100}的数称为一个复数, 其中数 $\\mathrm{i}$ 称为\\blank{50}, 并规定\\blank{50}."
},
"B00267": {
"lesson": "K0511",
"objs": [
"K0511003B",
"K0511004B"
],
"content": "全体复数构成的集合用字母\\blank{20}表示.\\\\\n约定: (1) 复数 $a+b \\mathrm{i}=0$($a,b \\in \\mathbf{R}$)$\\Leftrightarrow$\\blank{100};\\\\\n(2) 复数 $a+b \\mathrm{i}=c+d \\mathrm{i}$($a,b,c,d \\in \\mathbf{R}$)$\\Leftrightarrow$\\blank{100}."
},
"B00268": {
"lesson": "K0511",
"objs": [
"K0511005B",
"K0511006B",
"K0511007B"
],
"content": "复数的四则运算:\\\\\n(1) 加法和减法: $(a+b \\mathrm{i}) \\pm(c+d \\mathrm{i})=$\\blank{100}($a, b, c, d \\in \\mathbf{R}$).\\\\\n(2) 乘法: $(a+b\\mathrm{i})(c+d\\mathrm{i})=$\\blank{150}($a, b, c, d \\in \\mathbf{R}$).\\\\\n复数的加法与乘法满足\\blank{30}律、\\blank{30}律与\\blank{30}律.\\\\\n(3) 除法: $\\dfrac{a+b\\mathrm{i}}{c+d\\mathrm{i}}= $\\blank{150}($a,b,c,d \\in \\mathbf{R}$, $c+d\\mathrm{i} \\neq 0$)."
},
"B00269": {
"lesson": "K0511",
"objs": [
"K0511008B"
],
"content": "复数的乘方\\\\\n(1) $(a+b\\mathrm{i})^n$ 表示\\blank{150}($a,b \\in \\mathbf{R}$, $n$ 为正整数), $(a+b\\mathrm{i})^{-n}=$\\blank{100}, $(a+b\\mathrm{i})^0=$\\blank{50}.($a+b\\mathrm{i} \\neq 0$)\\\\\n(2) $(a+b\\mathrm{i})^n(c+d\\mathrm{i})^n=$\\blank{150}, $[(a+b\\mathrm{i})^m]^n=$\\blank{50}."
},
"B00270": {
"lesson": "K0512",
"objs": [
"K0512001B",
"K0512002B"
],
"content": "复数的表达方式\\blank{100}称为它的代数形式, 其中复数的实部是\\blank{20}, 记作\\blank{50}, 虚部是\\blank{20}, 记作\\blank{50}."
},
"B00271": {
"lesson": "K0512",
"objs": [
"K0512003B"
],
"content": "对于复数 $z=a+b\\mathrm{i}$($a$、$b \\in \\mathbf{R}$)\\\\\n(1) $z$ 是实数 $\\Leftrightarrow$\\blank{50}.\\\\\n(2) $z$ 是虚数 $\\Leftrightarrow$\\blank{50}.\\\\\n(3) $z$ 是纯虚数 $\\Leftrightarrow$\\blank{50}."
},
"B00272": {
"lesson": "K0512",
"objs": [
"K0512005B",
"K0512006B"
],
"content": "复数 $z=a+b\\mathrm{i}$($a$、$b \\in \\mathbf{R}$) 的共轭复数是\\blank{50}, 记作\\blank{50}.\\\\\n共轭复数有如下性质:\n$\\overline{\\overline{z}}=$\\blank{50}, $\\overline{z_1 \\pm z_2}=$\\blank{50}, $\\overline{z_1 z_2}=$\\blank{50}, $\\overline{(\\dfrac{z_1}{z_2})}=$\\blank{50}($z_2 \\neq 0$)."
},
"B00273": {
"lesson": "K0513",
"objs": [
"K0513001B",
"K0513002B",
"K0513003B"
],
"content": "复平面:\\\\\n在平面上建立直角坐标系, 以坐标为 $(a, b)$ 的点 $Z$ 表示复数 $z=a+b\\mathrm{i}$, 就可在平面上的点的集合与复数集合之间建立一一对应. 这样用来表示复数的平面叫做\\blank{50}.\\\\\n在复平面上, $x$ 轴称为\\blank{50}, $x$ 轴上的点都对应\\blank{20}数; $y$ 轴称为\\blank{50}, $y$ 轴上的点(除坐标原点) 都对应\\blank{20}数; 坐标原点对应数\\blank{20}.\\\\\n共轭复数: $z=a+b\\mathrm{i}$ 与 $\\overline{z}=a-b i$($a, b \\in \\mathbf{R}$) 在复平面上所对应的点关于\\blank{20}轴对称, 特别地, $z$ 是实数, 则\\blank{50}, 此时 $z$、$\\overline{z}$ 在复平面上所对应的点是位于\\blank{50}的同一个点."
},
"B00274": {
"lesson": "K0513",
"objs": [
"K0513004B",
"K0513005B"
],
"content": "复数的向量表示:\\\\\n(1) 复数 $z=a+b\\mathrm{i}$($a, b \\in \\mathbf{R}$) 对应平面向量 $\\overrightarrow{OZ}=$\\blank{50}.\\\\\n(2) 复数 $z_1=a+b\\mathrm{i}$($a, b \\in \\mathbf{R}$) 对应向量 $\\overrightarrow{OZ_1}=$\\blank{50}和 $z_2=c+d\\mathrm{i}$($c, d \\in \\mathbf{R}$) 对应向量 $\\overrightarrow{OZ_2}=$\\blank{50}, 则 $z_1+z_2$ 对应向量\\blank{100}, $z_1-z_2$ 对应向量\\blank{100}."
},
"B00275": {
"lesson": "K0514",
"objs": [
"K0514001B",
"K0514002B"
],
"content": "复数的模:\\\\\n复数 $z=a+b\\mathrm{i}$($a, b \\in \\mathbf{R}$) 所对应的点 $Z(a, b)$ 到原点的距离叫做复数 $z$ 的模, 记作 $|z|$.\\\\\n$|z|=$\\blank{80}$=$\\blank{80}. 复数的模与可以说成是它对应的\\blank{50}的模."
},
"B00276": {
"lesson": "K0514",
"objs": [
"K0514003B",
"K0514006B"
],
"content": "复数的模有如下性质:\n$|z|=$\\blank{50}; $z\\overline{z}=$\\blank{50}; $|z_1z_2|=$\\blank{50}; $|\\dfrac{z_1}{z_2}|=$\\blank{50};\\\\\n$|z_1|+|z_2|\\ge$\\blank{80}; $|z_1-z_2|=$\\blank{100}$=$\\blank{50}$=$\\blank{50}."
},
"B00277": {
"lesson": "K0515",
"objs": [
"K0515001B"
],
"content": "复数的平方根定义: 若复数 $a+b\\mathrm{i}$ 和 $c+d\\mathrm{i}$($a, b, c, d \\in \\mathbf{R}$) 满足 $(a+b\\mathrm{i})^2=c+d\\mathrm{i}$, 则称 $a+b\\mathrm{i}$ 是 $c+d\\mathrm{i}$ 的(一个)平方根.\\\\\n注: 由定义可知, 若 $a+b\\mathrm{i}$ 是 $c+d\\mathrm{i}$ 的平方根, 则\\blank{50}也是 $c+d\\mathrm{i}$ 的平方根."
},
"B00278": {
"lesson": "K0515",
"objs": [
"K0515002B"
],
"content": "如何求一个复数的平方根\\\\\n一般情况: $a+b\\mathrm{i}$ 是 $c+d\\mathrm{i}$ 的平方根, 即 $(a+b\\mathrm{i})^2=c+d\\mathrm{i}$, 即 $a^2-b^2+2 a b \\mathrm{i}=c+d \\mathrm{i}$, 根据复数相等的定义, 即$\\begin{cases}a^2-b^2=c,\\\\2 a b=d.\\end{cases}$\n特别地, 若 $d=0$ , 则 $c+d\\mathrm{i}$ 为实数, 此时 $2 a b=0$, 当\\\\\n\\textcircled{1} $c=0$ 时, $a^2=b^2$, 此时 $a=b=0$ , 即零的平方根是\\blank{50}.\\\\\n\\textcircled{2} $c>0$ 时, 则只能 $b=0$ , 此时 $a= \\pm \\sqrt{c}$, 即正数$c$的平方根是\\blank{50}, 是两个\\blank{20}数.\\\\\n\\textcircled{3} $c<0$ 时, 则只能 $a=0$ , 此时 $b= \\pm \\sqrt{-c}$ ; 即负数$c$的平方根是\\blank{50}, 是两个\\blank{20}数."
},
"B00279": {
"lesson": "K0515",
"objs": [
"K0515003B",
"K0515005B"
],
"content": "实系数一元二次方程的解对于方程 $a x^2+b x+c=0$($a, b, c \\in \\mathbf{R}$, $a \\neq 0$) 配方得 $(x+\\dfrac{b}{2 a})^2=\\dfrac{b^2-4 a c}{4 a^2}$.\\\\\n\\textcircled{1} 当 $\\Delta=b^2-4 a c>0$ 时, 方程有两个不等实数根: $x_{1,2}=$\\blank{100};\\\\\n\\textcircled{2} 当 $\\Delta=b^2-4 a c=0$ 时, 方程有两个相等的实数根: $x_1=x_2=$\\blank{100};\\\\\n\\textcircled{3} 当 $\\Delta=b^2-4 a c<0$ 时, 方程有一对共轭虚根: $x_{1,2}=$\\blank{100}."
},
"B00280": {
"lesson": "K0515",
"objs": [
"K0515006B"
],
"content": "实系数一元二次方程的根与系数的关系:\\\\\n由必修课程第 2 章已经知道, 对于实系数一元二次方程 $a x^2+b x+c=0$($a, b, c \\in \\mathbf{R}$, $a \\neq 0$), 当 $\\Delta=b^2-4 a c \\geq 0$ 时, 方程有两个实根满足 $x_1+x_2=-\\dfrac{b}{a}$, $x_1 x_2=\\dfrac{c}{a}$; 容易验证当 $\\Delta=b^2-4 a c<0$ 时, 方程的一对共轭虚根, 同样满足如下关系: $x_1+x_2=$\\blank{50}, $x_1 x_2=$\\blank{50}.\\\\\n反之, 若 $x_1+x_2=-\\dfrac{b}{a}$, $x_1 x_2=\\dfrac{c}{a}$, 则 $x_1, x_2$ 是方程 $a x^2+b x+c=0$($a \\neq 0$) 的根."
},
"B00281": {
"lesson": "K0516",
"objs": [
"K0516001B",
"K0516002B"
],
"content": "复数 $z=a+b\\mathrm{i}$($a$、$b \\in \\mathbf{R}$) 的辐角 $\\theta$ 及辐角主值: 以原点 $O$ 为顶点, $x$ 轴的正半轴为始边、射线 $OZ$ 为终边的角 $\\theta$, 叫做复数 $z$ 的\\blank{50}, 记作\\blank{50}. 规定: 复数 $0$ 的辐角的大小是\\blank{80}. 在复数的 $z$ 所有辐角中, 满足\\blank{100}的辐角称为 $z$ 的辐角主值, 记为\\blank{50}."
},
"B00282": {
"lesson": "K0516",
"objs": [
"K0516003B"
],
"content": "复数 $z=a+b\\mathrm{i}$($a$、$b \\in \\mathbf{R}$) 的三角形式: $z=$\\blank{100}, 其中 $r=$\\blank{50}, $a=$\\blank{50}, $b=$\\blank{50}.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw [->] (-0.5,0) -- (3,0) node [below] {$x$} coordinate (x);\n\\draw [->] (0,-0.5) -- (0,2) node [left] {$y$};\n\\draw (0,0) node [below left] {$O$} coordinate (O);\n\\draw (2.5,1.5) node [above] {$Z(a,b)$} coordinate (Z);\n\\draw [->] (0,0) -- (Z) node [midway, above left] {$r$};\n\\draw [dashed] (2.5,0) node [below] {$a$} -- (2.5,1.5) -- (0,1.5) node [left] {$b$};\n\\draw pic [draw, \"$\\theta$\", scale = 0.8, angle eccentricity = 1.6] {angle = x--O--Z};\n\\filldraw (Z) circle (0.03);\n\\end{tikzpicture}\n\\end{center}"
},
"B00283": {
"lesson": "K0517",
"objs": [
"K0517001B",
"K0517002B",
"K0517003B",
"K0517004B",
"K0517005B",
"K0517006B"
],
"content": "三角形式下复数的乘除法与乘方:\\\\\n若 $z_1=r_1(\\cos \\theta_1+\\mathrm{i} \\sin \\theta_1)$, $z_2=r_2(\\cos \\theta_2+\\mathrm{i} \\sin \\theta_2)$, 其中 $r_1=|z_1| \\geq 0$, $r_2=|z_2| \\geq 0$, 则\\\\\n$z_1 z_2=$\\blank{100}; $\\dfrac{z_1}{z_2}=$\\blank{100}; $z_1^n=$\\blank{100}($n$ 为正整数).\\\\\n复数乘法的几何意义: 一般地, 把复数 $z_1=r_1(\\cos \\theta_1+\\mathrm{i} \\sin \\theta_1)$, 其中 $r_1=|z_1| \\geq 0$, 乘以任意一个复数 $z_2=r_2(\\cos \\theta_2+\\mathrm{i} \\sin \\theta_2)$, 其中 $r_2=|z_2| \\geq 0$, 在几何上就是把向量 $\\overrightarrow{OZ_1}$ 的模 $r_1$ 伸缩为\\blank{50}, 再旋转\\blank{50}角."
},
"B00284": {
"lesson": "K0517",
"objs": [
"K0517007B"
],
"content": "三角形式下复数的开方:\\\\\n复数 $z=r(\\cos \\theta+\\mathrm{i} \\sin \\theta)$($r=|z| \\geq 0$), 则对任何正整数 $n$ 有 $z^n=r^n(\\cos n \\theta+\\mathrm{i} \\sin n \\theta)$, 则 $z$ 的 $n$ 次方根为: \\blank{200}, 共有\\blank{20}个值."
}
}