183 lines
2.6 KiB
Plaintext
183 lines
2.6 KiB
Plaintext
ans
|
|
004353
|
|
$[1,2)$
|
|
|
|
004270
|
|
$(-3,1]$
|
|
|
|
004254
|
|
$3$
|
|
|
|
004145
|
|
$1$
|
|
|
|
004083
|
|
$3$
|
|
|
|
004232
|
|
$\dfrac{34}{35}$
|
|
|
|
004216
|
|
$4$
|
|
|
|
004149
|
|
$[-\dfrac 12,1]$
|
|
|
|
004172
|
|
$\dfrac 12$
|
|
|
|
004089
|
|
$-1$与$\dfrac 12$
|
|
|
|
004415
|
|
$1$
|
|
|
|
004135
|
|
D
|
|
|
|
004136
|
|
C
|
|
|
|
031282
|
|
A
|
|
|
|
004159
|
|
(1) $2$; (2) $\arctan\dfrac{\sqrt{2}}4$
|
|
|
|
004442
|
|
(1) $\dfrac{\pi}{12}$或$\dfrac\pi 4$; (2) $\omega = \dfrac 23$, 单调递增区间为$[0,\dfrac\pi 2]$
|
|
|
|
004721
|
|
(1) $8\sqrt{3}-8$; (2) 当$A$在弧$\overset\frown{MN}$的四等分点(更靠近$M$)处时, 矩形$ABCD$的面积最大, 最大面积为$16\sqrt{2}-16$
|
|
|
|
004246
|
|
(1) $[0,\arctan\dfrac 32)\cup (\dfrac{3\pi}4,\pi)$; (2) $\dfrac 83\pi+\sqrt{3}$; (3) 曲线$C$的方程为$x^2=\begin{cases} 24-8y, & y\ge 0, \\ 24+12y, & y\le 0,\end{cases}$ $a$的取值范围为$(6,24)$
|
|
|
|
004352
|
|
(1) $-5,-3,-1,1,3,5,7$; (2) $a_n=\begin{cases}\dfrac {n+1}2, & n=2k-1,\\ 1-\dfrac n 2, & n = 2k \end{cases}$($k$为正整数); (3) 证明略
|
|
|
|
031311
|
|
$\{4,5\}$
|
|
|
|
031312
|
|
$(1,11)$
|
|
|
|
031313
|
|
$-\dfrac 35+\dfrac 45\mathrm{i}$
|
|
|
|
031314
|
|
$1$
|
|
|
|
031315
|
|
$2\sqrt{3}$
|
|
|
|
031316
|
|
$2$
|
|
|
|
031317
|
|
$(-\dfrac 15,\dfrac 25)$
|
|
|
|
031318
|
|
$(1,5)$
|
|
|
|
031319
|
|
$\dfrac 1{4046}$
|
|
|
|
031320
|
|
$\dfrac 3{392}$
|
|
|
|
031321
|
|
$(-6,\dfrac{19}{54})$
|
|
|
|
031322
|
|
$2$
|
|
|
|
031323
|
|
A
|
|
|
|
031324
|
|
B
|
|
|
|
031325
|
|
B
|
|
|
|
031326
|
|
D
|
|
|
|
031327
|
|
(1) $\arctan 35$; (2) $3\sqrt{2}$
|
|
|
|
031328
|
|
(1) $33.7$岁; (2) $\chi^2\approx 87.366>3.841$, 所以有骑行绿道与万元级运动自行车购买意愿有关
|
|
|
|
031329
|
|
(1) 约为$65.7\text{cm}^2$; (2) 参考改进建议: \textcircled{1} 雨伞不遮挡视线; \textcircled{2} 伞面为弧形,改进模型将伞设为一段圆弧; \textcircled{3} 考虑伞柄可以伸缩; \textcircled{4} 人体改进为立体模型; \textcircled{5} 考虑风速、风向; \textcircled{6} 考虑撑伞的省力、稳定等.
|
|
|
|
031330
|
|
(1) $\dfrac 12$; (2) 证明略; (3) $\dfrac 49x^2+\dfrac 45 y^2=1$($y>0$)
|
|
|
|
031331
|
|
(1) $a=-1$; (2) 当$a\ge 0$时, $f(x)$在$(0,+\infty)$上是严格增函数; 当$a<0$时, $f(x)$在$(0,-\dfrac 1a]$上是严格增函数, 在$[-\dfrac 1a,+\infty)$上是严格减函数; (3) (i) $(-\dfrac 1{\mathrm{e}},0)$; (ii) $(\dfrac 12,+\infty)$
|
|
|
|
014743
|
|
$\pi$
|
|
|
|
014744
|
|
$1$
|
|
|
|
014745
|
|
$9$
|
|
|
|
014746
|
|
$80$
|
|
|
|
014747
|
|
$3$
|
|
|
|
014748
|
|
$0.3$
|
|
|
|
014749
|
|
$\dfrac{\sqrt{3}}3\pi$
|
|
|
|
014750
|
|
$9$
|
|
|
|
014751
|
|
$8$
|
|
|
|
014752
|
|
$1$
|
|
|
|
014753
|
|
$[16-\sqrt{2},16+\sqrt{2}]$
|
|
|
|
014754
|
|
$10-4\sqrt{7}$
|
|
|
|
014755
|
|
D
|
|
|
|
014756
|
|
A
|
|
|
|
014757
|
|
B
|
|
|
|
014758
|
|
B
|
|
|
|
014759
|
|
(1) $\dfrac\pi 3$; (2) 最大值为$6$
|
|
|
|
014760
|
|
(1) $\dfrac 56$; (2) 证明略($H$和点$E$重合); (3) $\arcsin\dfrac{\sqrt{6}}3$
|
|
|
|
014761
|
|
(1) 证明略; $a_n=5^{n-1}+1$; (2) $999$
|
|
|
|
014762
|
|
(1) $\dfrac{x^2}4+\dfrac{y^2}3=1$; (2) $4$; (3) $8$
|
|
|
|
014763
|
|
(1) $0$是极大值点, $2$是极小值点; (2) $[\dfrac 72-\ln 4,+\infty)$; (3) 证明略 |