64 lines
771 B
Plaintext
64 lines
771 B
Plaintext
ans
|
|
31361
|
|
$\sqrt{2}$
|
|
|
|
31362
|
|
$66$
|
|
|
|
31363
|
|
$-1$
|
|
|
|
31364
|
|
$8.5$
|
|
|
|
31365
|
|
$160$
|
|
|
|
31366
|
|
$\dfrac{8\sqrt{3}}3\pi$
|
|
|
|
31367
|
|
$10\sqrt{3}$
|
|
|
|
31368
|
|
$-3$
|
|
|
|
31369
|
|
$\dfrac 45$
|
|
|
|
31370
|
|
$\dfrac{4\pi}3$
|
|
|
|
31371
|
|
$[-\dfrac{13}4,3]$
|
|
|
|
31372
|
|
$[\dfrac 52,3]$
|
|
|
|
31373
|
|
B
|
|
|
|
31374
|
|
A
|
|
|
|
31375
|
|
B
|
|
|
|
31376
|
|
D
|
|
|
|
31377
|
|
(1) 证明略; (2) $\arcsin \dfrac{\sqrt{15}}5$
|
|
|
|
31378
|
|
(1) 当$a=0$时, $f_a(x)$是偶函数, 当$a\ne 0$时, $f_a(x)$既不是奇函数又不是偶函数; (2) $[0,4]$
|
|
|
|
31379
|
|
(1) $[arcsin \dfrac 13,\dfrac{\pi}6]$; (2) 约为$29.3^\circ$
|
|
|
|
31380
|
|
(1) $\dfrac{x^2}{4}-\dfrac{y^2}{4}=1$; (2) $k_1k_2=1$; (3) $(\dfrac 12,1)\cup (1,2)$
|
|
|
|
31381
|
|
(1) $P_2=9$, $S_2=38$; (2) $14a+27b+14c$; (3) 存在, 满足的条件为$\begin{cases} a+c=0, \\ b\ne 0,\end{cases}$或$\begin{cases} a+2b+c=0, \\ b\ne 0.\end{cases}$
|