95 lines
6.3 KiB
Plaintext
95 lines
6.3 KiB
Plaintext
solution
|
||
017239
|
||
(1) 由底面$ABC$为等腰直角三角形且 $AB \perp AC$知$AB\perp$平面$ACC_1A_1$, \\
|
||
从而$BM$在平面$ACC_1A_1$上的投影为$AM$,
|
||
故由$BM \perp A_1C$ 知 $AM\perp A_1C $, \\
|
||
结合$AC=2$, $AA_1=4$ 得 $MC=1$, 即$h=1$.\\
|
||
(2) 如图建系:以$A$为原点,分别以$\overrightarrow{AB}$、$\overrightarrow{AC}$、$\overrightarrow{AA_1}$方向为$x$轴、 $y$轴、$z$ 轴正方向建立平面直角坐标系.\\
|
||
$A(0,0,0),B(2,0,0),C(0,2,0),A_1(0,0,4),M(0,2,2)$,
|
||
$\overrightarrow{BA_1}=(-2,0,4),\overrightarrow{AB}=(2,0,0),\overrightarrow{AM}=(0,2,2),$\\
|
||
设平面$ABM$的一个法向量为$\overrightarrow{n}=(x,y,z)$, 则$\begin{cases}
|
||
2x=0,\\
|
||
2y+2z=0.
|
||
\end{cases}$ 取$\overrightarrow{n}=(0,1,-1),$设直线$BA_1$与平面$ABM$所成的角为$\theta$, 则$\sin\theta=|\cos \langle\overrightarrow{BA_1},\overrightarrow{n}\rangle|=\dfrac{|\overrightarrow{BA_1}\cdot\overrightarrow{n}|}{|\overrightarrow{BA_1}|\cdot|\overrightarrow{n}|}=\dfrac{\sqrt{10}}{5}$, 故直线$BA_1$与平面$ABM$所成的角为$\arcsin\dfrac{\sqrt{10}}{5}$.
|
||
|
||
|
||
|
||
017240
|
||
(1) 由 $S=\dfrac{1}{2}ac\sin B=\dfrac{\sqrt{3}}{4}ac=\sqrt{3}$知$ac=4$,\\
|
||
由$a^2+c^2-b^2=2ac\cos B$知$a^2+c^2=9$.\\
|
||
结合两式得$(a-c)^2=1$, 故$a-c=\pm 1$\\
|
||
(2) 由$2\cos C (ac\cos B+cb\cos A)=c^2$知$2a\cos B\cos C+2b \cos A\cos C=c$,\\
|
||
又由正弦定理知 $2\cos C(\sin A\cos B+\sin B\cos A)=\sin C$,\\
|
||
$2\cos C \sin (A+B)=2\cos C \sin C=\sin C$,其中$C\in (0,\pi), \sin C>0$,\\
|
||
故$\cos C=\dfrac{1}{2}$, $C\in(0,\pi)$, $C=\dfrac{\pi}{3}$.
|
||
|
||
|
||
|
||
017241
|
||
(1) $\dfrac{p}{p+40}=\dfrac{3}{5}$得$p=60$, $q=40$, $x=100$, $y=100$.\\
|
||
(2) 原假设$H_0:$ 是否注射此种疫苗与是否感染病毒无关.\\
|
||
$\chi^2=\dfrac{200\times (40\times 40-60\times 60)^2}{100\times 100\times 100\times 100}=8>3.841$\\
|
||
故拒绝原假设,即有$95 \%$的把握认为注射此种疫苗有效.\\
|
||
(3) 抽取$6$只未注射疫苗、$4$只注射疫苗的小白鼠.\\
|
||
$P(X=0)=\dfrac{C_6^0C_4^4}{C_{10}^4}=\dfrac{1}{210}$;\\
|
||
$P(X=1)=\dfrac{C_6^1C_4^3}{C_{10}^4}=\dfrac{4}{35}$;\\
|
||
$P(X=2)=\dfrac{C_6^2C_4^2}{C_{10}^4}=\dfrac{3}{7}$;\\
|
||
$P(X=3)=\dfrac{C_6^3C_4^1}{C_{10}^4}=\dfrac{8}{21}$;\\
|
||
$P(X=4)=\dfrac{C_6^4C_4^0}{C_{10}^4}=\dfrac{1}{14}$.\\
|
||
故$X$的分布为$\begin{pmatrix}
|
||
0&1&2&3&4\\
|
||
\dfrac{1}{210}&\dfrac{4}{35}&\dfrac{3}{7}&\dfrac{8}{21}&\dfrac{1}{14}
|
||
\end{pmatrix},$\\
|
||
期望$E[X]=0\times \dfrac{1}{210}+1\times \dfrac{4}{35}+2\times \dfrac{3}{7}+3\times \dfrac{8}{21}+4\times \dfrac{1}{14}=\dfrac{12}{5}$.
|
||
|
||
|
||
|
||
017242
|
||
(1) 椭圆的离心率$e=\dfrac{1}{2}$;\\
|
||
(2) 证明: 当$x_0=2$时,$y_0=0,$ 过点$P$的椭圆$C$的切线方程为 $x=2$,符合$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$,\\
|
||
同理,当$x_0=-2$时,也符合;\\
|
||
当$x_0\neq\pm 2$时,设过点$P$的椭圆$C$的切线方程为$y-y_0=k(x-x_0)$($k$存在),\\
|
||
联立$\begin{cases}
|
||
y-y_0=k(x-x_0),\\
|
||
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
|
||
\end{cases}$得$(3+4k^2)x^2+8k(y-kx_0)x+4(y_0-kx_0)^2-12=0$,\\
|
||
$\Delta=0$得$(x_0^2-4)k^2-2x_0y_0k+y_0^2-3=0$,解得$k=\dfrac{x_0y_0}{x_0^2-4}=\dfrac{x_0y_0}{4(1-\dfrac{y_0^2}{3})-4}=-\dfrac{3x_0}{4y_0}.$\\
|
||
故$y-y_0=-\dfrac{3x_0}{4y_0}(x-x_0)$,即$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
|
||
综上,过点$P$的椭圆$C$的切线方程为$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
|
||
(3) 设$A(x_1,y_1).B(x_2,y_2),x_1\neq x_2,M(4,t)$.\\
|
||
则切线$MA:\dfrac{x_1x}{4}+\dfrac{y_1y}{3}=1,$代入$(4,t)$得$x_1+\dfrac{ty_1}{3}=1$,\\
|
||
同理,$x_1+\dfrac{ty_1}{3}=1$,\\
|
||
故$A(x_1,y_1),B(x_2,y_2)$在直线$x+\dfrac{ty}{3}=1$上,故直线$AB:x=-\dfrac{ty}{3}+1$.\\
|
||
联立$\begin{cases}
|
||
x=-\dfrac{ty}{3}+1,\\
|
||
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
|
||
\end{cases}$
|
||
得
|
||
$(4+\dfrac{t^2}{3})y^2-2ty-9=0$, $\Delta=16t^2+144>0$,\\
|
||
$|AB|=\sqrt{1+\dfrac{t^2}{9}}\cdot |y_1-y_2|=\sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}$,\\
|
||
$M$到直线$AB$的距离$d=\dfrac{|4+\dfrac{t^2}{3}-1|}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}$,\\
|
||
$\triangle MAB$的面积$S=\dfrac{1}{2}|AB|\cdot d=\dfrac{1}{2}\cdot \sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}\cdot \dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{2(t^2+9)\sqrt{t^2+9}}{t^2+12}$,\\
|
||
令$\lambda=\sqrt{t^2+9}\geq3, S=f(\lambda)=\dfrac{2\lambda^3}{\lambda^2+3},$
|
||
则$f^{'} (\lambda)=\dfrac{2\lambda^4+18\lambda^2}{(\lambda^2+3)^2}>0$,故$f(\lambda)$在$[3,+\infty)$严格增,$f(\lambda)_{\min}=f(3)=\dfrac{9}{2}$,故$\triangle MAB$的面积的最小值为$\dfrac{9}{2},$ 此时$M$的坐标为$(4,0)$.
|
||
|
||
|
||
|
||
017243
|
||
(1) $x_1=\dfrac{1}{2},x_{n+1}=g(x_n)=\dfrac{x_n}{x_{n+1}},$故$x_n>0,\dfrac{1}{x_{n+1}}=\dfrac{x_n+1}{x_n}=\dfrac{1}{x_n}+1$,即$\dfrac{1}{x_{n+1}}-\dfrac{1}{x_{n}}=1$,\\因此数列$\{\dfrac{1}{x_n}\}$是以$2$为首项,$1$为公差的等差数列.\\
|
||
(2) 对任意$x>0$ 均有$f(x)-mg(x)=\ln (x+1)-\dfrac{mx}{x+1}+1>0,$\\
|
||
令$h(x)=\ln (x+1)-\dfrac{mx}{x+1}+1,x>0,$则$h^{'}(x)=\dfrac{x+1-m}{(x+1)^2}$.\\
|
||
当$m\geq4$时,$h(1)=\ln 2-\dfrac{m}{2}+1<2-\dfrac{m}{2}<0,$这与$h(x)>0$对$x>0$恒成立矛盾;\\
|
||
当$m=3$时,$h(x)=\ln (x+1)-\dfrac{3x}{x+1}+1,h^{'}(x)\dfrac{x-2}{(x+1)^2}.h(x)$在$(0,2]$严格减,在$[2,+\infty)$严格增,故$h(x)_{\min}=h(2)=\ln 3-2+1=\ln 3-1>0$,符合题意.\\
|
||
综上,整数$m$的最大值为$3$.\\
|
||
(3) 对任意正整数$t$,取$n=100t,$则 \\$\displaystyle f(n-t)=f(99t)=\ln (1+99t)=\ln \dfrac{1+99t}{99t}+\ln \dfrac{99t}{99t-1}+\cdots +\ln \dfrac{2}{1}=\sum_{k=1}^{99t}\ln (1+\dfrac{1}{k}).$\\
|
||
$\displaystyle n-\sum_{k=1}^{100t}g(k)=\sum_{k=1}^{100t}(1- g(k))=\sum_{k=1}^{100t} \dfrac{1}{1+k}=\sum_{k=1}^{99t} \dfrac{1}{1+k}+\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
|
||
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
|
||
令$H(x)=\ln (x+1)-\dfrac{x}{x+1},x>0$,则$H^{'}(x)=\dfrac{x}{(x+1)^2}>0$恒成立,故$H(x)$在$(0,+\infty)$严格增,$H(x)>H(0)=0$,故$\ln (1+x)>\dfrac{x}{x+1}$对$x>0$恒成立.\\
|
||
因此$\ln (1+\dfrac{1}{k})>\dfrac{\dfrac{1}{k}}{1+\dfrac{1}{k}}=\dfrac{1}{1+k}$,\\
|
||
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}$\\
|
||
$\displaystyle>\sum_{k=2}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})+(\ln 2-\dfrac{1}{2})- \dfrac{t}{1+99t+1}>\ln 2-\dfrac{1}{2}-\dfrac{1}{99+\dfrac{2}{t}}>0.1-\dfrac{1}{99}>0.$\\
|
||
因此不存在正整数$t$使得对任意$n \in \mathbf{N}$, $n \geq t$, 都有$\displaystyle f(n-t)<n-\sum_{k=1}^n g(k)$成立.
|
||
|
||
|
||
|