This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具/文本文件/metadata.txt

95 lines
6.3 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

solution
017239
(1) 由底面$ABC$为等腰直角三角形且 $AB \perp AC$知$AB\perp$平面$ACC_1A_1$, \\
从而$BM$在平面$ACC_1A_1$上的投影为$AM$,
故由$BM \perp A_1C$ 知 $AM\perp A_1C $, \\
结合$AC=2$, $AA_1=4$ 得 $MC=1$, 即$h=1$.\\
(2) 如图建系:以$A$为原点,分别以$\overrightarrow{AB}$、$\overrightarrow{AC}$、$\overrightarrow{AA_1}$方向为$x$轴、 $y$轴、$z$ 轴正方向建立平面直角坐标系.\\
$A(0,0,0),B(2,0,0),C(0,2,0),A_1(0,0,4),M(0,2,2)$,
$\overrightarrow{BA_1}=(-2,0,4),\overrightarrow{AB}=(2,0,0),\overrightarrow{AM}=(0,2,2),$\\
设平面$ABM$的一个法向量为$\overrightarrow{n}=(x,y,z)$, 则$\begin{cases}
2x=0,\\
2y+2z=0.
\end{cases}$ 取$\overrightarrow{n}=(0,1,-1),$设直线$BA_1$与平面$ABM$所成的角为$\theta$, 则$\sin\theta=|\cos \langle\overrightarrow{BA_1},\overrightarrow{n}\rangle|=\dfrac{|\overrightarrow{BA_1}\cdot\overrightarrow{n}|}{|\overrightarrow{BA_1}|\cdot|\overrightarrow{n}|}=\dfrac{\sqrt{10}}{5}$, 故直线$BA_1$与平面$ABM$所成的角为$\arcsin\dfrac{\sqrt{10}}{5}$.
017240
(1) 由 $S=\dfrac{1}{2}ac\sin B=\dfrac{\sqrt{3}}{4}ac=\sqrt{3}$知$ac=4$\\
由$a^2+c^2-b^2=2ac\cos B$知$a^2+c^2=9$.\\
结合两式得$(a-c)^2=1$, 故$a-c=\pm 1$\\
(2) 由$2\cos C (ac\cos B+cb\cos A)=c^2$知$2a\cos B\cos C+2b \cos A\cos C=c$,\\
又由正弦定理知 $2\cos C(\sin A\cos B+\sin B\cos A)=\sin C$\\
$2\cos C \sin (A+B)=2\cos C \sin C=\sin C$,其中$C\in (0,\pi), \sin C>0$,\\
故$\cos C=\dfrac{1}{2}$, $C\in(0,\pi)$, $C=\dfrac{\pi}{3}$.
017241
(1) $\dfrac{p}{p+40}=\dfrac{3}{5}$得$p=60$, $q=40$, $x=100$, $y=100$.\\
(2) 原假设$H_0:$ 是否注射此种疫苗与是否感染病毒无关.\\
$\chi^2=\dfrac{200\times (40\times 40-60\times 60)^2}{100\times 100\times 100\times 100}=8>3.841$\\
故拒绝原假设,即有$95 \%$的把握认为注射此种疫苗有效.\\
(3) 抽取$6$只未注射疫苗、$4$只注射疫苗的小白鼠.\\
$P(X=0)=\dfrac{C_6^0C_4^4}{C_{10}^4}=\dfrac{1}{210}$;\\
$P(X=1)=\dfrac{C_6^1C_4^3}{C_{10}^4}=\dfrac{4}{35}$;\\
$P(X=2)=\dfrac{C_6^2C_4^2}{C_{10}^4}=\dfrac{3}{7}$;\\
$P(X=3)=\dfrac{C_6^3C_4^1}{C_{10}^4}=\dfrac{8}{21}$;\\
$P(X=4)=\dfrac{C_6^4C_4^0}{C_{10}^4}=\dfrac{1}{14}$.\\
故$X$的分布为$\begin{pmatrix}
0&1&2&3&4\\
\dfrac{1}{210}&\dfrac{4}{35}&\dfrac{3}{7}&\dfrac{8}{21}&\dfrac{1}{14}
\end{pmatrix},$\\
期望$E[X]=0\times \dfrac{1}{210}+1\times \dfrac{4}{35}+2\times \dfrac{3}{7}+3\times \dfrac{8}{21}+4\times \dfrac{1}{14}=\dfrac{12}{5}$.
017242
(1) 椭圆的离心率$e=\dfrac{1}{2}$;\\
(2) 证明: 当$x_0=2$时,$y_0=0,$ 过点$P$的椭圆$C$的切线方程为 $x=2$,符合$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$\\
同理,当$x_0=-2$时,也符合;\\
当$x_0\neq\pm 2$时,设过点$P$的椭圆$C$的切线方程为$y-y_0=k(x-x_0)$($k$存在),\\
联立$\begin{cases}
y-y_0=k(x-x_0),\\
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
\end{cases}$得$(3+4k^2)x^2+8k(y-kx_0)x+4(y_0-kx_0)^2-12=0$,\\
$\Delta=0$得$(x_0^2-4)k^2-2x_0y_0k+y_0^2-3=0$,解得$k=\dfrac{x_0y_0}{x_0^2-4}=\dfrac{x_0y_0}{4(1-\dfrac{y_0^2}{3})-4}=-\dfrac{3x_0}{4y_0}.$\\
故$y-y_0=-\dfrac{3x_0}{4y_0}(x-x_0)$,即$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
综上,过点$P$的椭圆$C$的切线方程为$\dfrac{x_0 x}{4}+\dfrac{y_0 y}{3}=1$.\\
(3) 设$A(x_1,y_1).B(x_2,y_2),x_1\neq x_2,M(4,t)$.\\
则切线$MA:\dfrac{x_1x}{4}+\dfrac{y_1y}{3}=1,$代入$(4,t)$得$x_1+\dfrac{ty_1}{3}=1$,\\
同理,$x_1+\dfrac{ty_1}{3}=1$\\
故$A(x_1,y_1),B(x_2,y_2)$在直线$x+\dfrac{ty}{3}=1$上,故直线$AB:x=-\dfrac{ty}{3}+1$.\\
联立$\begin{cases}
x=-\dfrac{ty}{3}+1,\\
\dfrac{x^2}{4}+\dfrac{y^2}{3}=1
\end{cases}$
$(4+\dfrac{t^2}{3})y^2-2ty-9=0$, $\Delta=16t^2+144>0$,\\
$|AB|=\sqrt{1+\dfrac{t^2}{9}}\cdot |y_1-y_2|=\sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}$,\\
$M$到直线$AB$的距离$d=\dfrac{|4+\dfrac{t^2}{3}-1|}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}$,\\
$\triangle MAB$的面积$S=\dfrac{1}{2}|AB|\cdot d=\dfrac{1}{2}\cdot \sqrt{1+\dfrac{t^2}{9}}\cdot \dfrac{\sqrt{16t^2+144}}{4+\dfrac{t^2}{3}}\cdot \dfrac{3+\dfrac{t^2}{3}}{\sqrt{1+\dfrac{t^2}{9}}}=\dfrac{2(t^2+9)\sqrt{t^2+9}}{t^2+12}$,\\
令$\lambda=\sqrt{t^2+9}\geq3, S=f(\lambda)=\dfrac{2\lambda^3}{\lambda^2+3},$
则$f^{'} (\lambda)=\dfrac{2\lambda^4+18\lambda^2}{(\lambda^2+3)^2}>0$,故$f(\lambda)$在$[3,+\infty)$严格增,$f(\lambda)_{\min}=f(3)=\dfrac{9}{2}$,故$\triangle MAB$的面积的最小值为$\dfrac{9}{2},$ 此时$M$的坐标为$(4,0)$.
017243
(1) $x_1=\dfrac{1}{2},x_{n+1}=g(x_n)=\dfrac{x_n}{x_{n+1}},$故$x_n>0,\dfrac{1}{x_{n+1}}=\dfrac{x_n+1}{x_n}=\dfrac{1}{x_n}+1$,即$\dfrac{1}{x_{n+1}}-\dfrac{1}{x_{n}}=1$,\\因此数列$\{\dfrac{1}{x_n}\}$是以$2$为首项,$1$为公差的等差数列.\\
(2) 对任意$x>0$ 均有$f(x)-mg(x)=\ln (x+1)-\dfrac{mx}{x+1}+1>0,$\\
令$h(x)=\ln (x+1)-\dfrac{mx}{x+1}+1,x>0,$则$h^{'}(x)=\dfrac{x+1-m}{(x+1)^2}$.\\
当$m\geq4$时,$h(1)=\ln 2-\dfrac{m}{2}+1<2-\dfrac{m}{2}<0,$这与$h(x)>0$对$x>0$恒成立矛盾;\\
当$m=3$时,$h(x)=\ln (x+1)-\dfrac{3x}{x+1}+1,h^{'}(x)\dfrac{x-2}{(x+1)^2}.h(x)$在$(0,2]$严格减,在$[2,+\infty)$严格增,故$h(x)_{\min}=h(2)=\ln 3-2+1=\ln 3-1>0$,符合题意.\\
综上,整数$m$的最大值为$3$.\\
(3) 对任意正整数$t$,取$n=100t,$则 \\$\displaystyle f(n-t)=f(99t)=\ln (1+99t)=\ln \dfrac{1+99t}{99t}+\ln \dfrac{99t}{99t-1}+\cdots +\ln \dfrac{2}{1}=\sum_{k=1}^{99t}\ln (1+\dfrac{1}{k}).$\\
$\displaystyle n-\sum_{k=1}^{100t}g(k)=\sum_{k=1}^{100t}(1- g(k))=\sum_{k=1}^{100t} \dfrac{1}{1+k}=\sum_{k=1}^{99t} \dfrac{1}{1+k}+\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}.$\\
令$H(x)=\ln (x+1)-\dfrac{x}{x+1},x>0$,则$H^{'}(x)=\dfrac{x}{(x+1)^2}>0$恒成立,故$H(x)$在$(0,+\infty)$严格增,$H(x)>H(0)=0$,故$\ln (1+x)>\dfrac{x}{x+1}$对$x>0$恒成立.\\
因此$\ln (1+\dfrac{1}{k})>\dfrac{\dfrac{1}{k}}{1+\dfrac{1}{k}}=\dfrac{1}{1+k}$,\\
$\displaystyle f(n-t)-[ n-\sum_{k=1}^{100t}g(k)]=\sum_{k=1}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})-\sum_{k=99t+1}^{100t} \dfrac{1}{1+k}$\\
$\displaystyle>\sum_{k=2}^{99t} (\ln (1+\dfrac{1}{k})-\dfrac{1}{1+k})+(\ln 2-\dfrac{1}{2})- \dfrac{t}{1+99t+1}>\ln 2-\dfrac{1}{2}-\dfrac{1}{99+\dfrac{2}{t}}>0.1-\dfrac{1}{99}>0.$\\
因此不存在正整数$t$使得对任意$n \in \mathbf{N}$, $n \geq t$, 都有$\displaystyle f(n-t)<n-\sum_{k=1}^n g(k)$成立.