419 lines
5.9 KiB
Plaintext
419 lines
5.9 KiB
Plaintext
ans
|
|
|
|
021441
|
|
错误, 正确, 错误, 错误
|
|
|
|
|
|
021442
|
|
D
|
|
|
|
|
|
021443
|
|
C
|
|
|
|
|
|
021444
|
|
A
|
|
|
|
|
|
021445
|
|
C
|
|
|
|
|
|
021446
|
|
D
|
|
|
|
|
|
021447
|
|
$-390^\circ$
|
|
|
|
|
|
021448
|
|
$304^\circ$, $-56^\circ$
|
|
|
|
|
|
021449
|
|
$-144^\circ$
|
|
|
|
|
|
021450
|
|
二, 四
|
|
|
|
|
|
021451
|
|
(1) $\{\alpha|\alpha=60^\circ+k\cdot 360^\circ, \ k\in \mathbf{Z}\}$, $-300^\circ$, $60^\circ$, $420^\circ$; (2) $\{\alpha|\alpha = -21^\circ+k\cdot 360^\circ, \ k \in \mathbf{Z}\}$, $-21^\circ$, $339^\circ$, $699^\circ$
|
|
|
|
|
|
021452
|
|
\begin{tikzpicture}[>=latex]
|
|
\fill [pattern = north east lines] (30:2) arc (30:60:2) -- (0,0) -- cycle;
|
|
\draw (30:2) -- (0,0) -- (60:2);
|
|
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
|
|
\draw [->] (0,-2) -- (0,2) node [left] {$y$};
|
|
\draw (0,0) node [below left] {$O$};
|
|
\end{tikzpicture}
|
|
|
|
|
|
021453
|
|
$-1290^{\circ}$;第二象限
|
|
|
|
|
|
021454
|
|
(1) $ \{\alpha|\alpha=45^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(2) $\{\alpha|\alpha=135^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(3) $\{\alpha|\alpha=45^{\circ}+k\cdot 90^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(4) $\{\alpha|180^{\circ}+k\cdot 360^{\circ}<\alpha<270^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
|
|
|
|
|
|
021455
|
|
(1) $ \{\beta|\beta=\alpha+180^{\circ}+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(2) $\{\beta|\beta=\alpha+90^{\circ}+k\cdot 180^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(3) $\{\beta|\beta=-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$;\\
|
|
(4) $\{\beta|\beta=90^{\circ}-\alpha+k\cdot 360^{\circ}, \ k \in \mathbf{Z}\}$.
|
|
|
|
|
|
021456
|
|
C
|
|
|
|
|
|
021457
|
|
B
|
|
|
|
|
|
021458
|
|
$\dfrac{\pi}{12}$; $\dfrac{7\pi}{12}$; $\dfrac{5\pi}{4}$; $300^{\circ}$; $324^{\circ}$; $315^{\circ}$; $(\dfrac{270}{\pi})^{\circ}$
|
|
|
|
|
|
021459
|
|
(1)$\frac{50\pi+180}{9}$;(2)$\frac{250\pi}{9}$
|
|
|
|
|
|
021460
|
|
$\sqrt{3}$
|
|
|
|
|
|
021461
|
|
(1)$\frac{\pi}{3}$;(2)$\frac{2\pi}{3}$
|
|
|
|
|
|
021462
|
|
(1)$16\pi+\frac{2\pi}{3}$,二;\\
|
|
(2)$-18\pi+\frac{4\pi}{3}$,三;\\
|
|
(3)$-2\pi+\frac{7\pi}{5}$,三;\\
|
|
(4)$-2\pi+\frac{3\pi}{4}$,二.
|
|
|
|
|
|
021463
|
|
$\frac{1}{2}$
|
|
|
|
|
|
021464
|
|
(1) $\{\alpha|-\frac{\pi}{2}+2k\pi<\alpha<2k\pi,\ k \in \mathbf{Z}\}$;\\
|
|
(2) $\{\alpha|\alpha=\frac{k\pi}{2},\ k \in \mathbf{Z}\}$.
|
|
|
|
|
|
021465
|
|
(1) $\beta=\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
|
|
(2) $\beta=-\alpha+2k\pi,\ k \in \mathbf{Z}$;\\
|
|
(3) $\beta=-\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$;\\
|
|
(4) $\beta=\alpha+\pi+2k\pi,\ k \in \mathbf{Z}$.
|
|
|
|
|
|
021466
|
|
(1) $\{\alpha|-\frac{\pi}{4}+2k\pi \le \alpha \le \frac{\pi}{2}+2k\pi,\ k \in \mathbf{Z}\}$;\\
|
|
(2) $\{\alpha|\frac{\pi}{6}+k\pi \le \alpha \le \frac{5\pi}{6}+k\pi,\ k \in \mathbf{Z}\}$.
|
|
|
|
|
|
021467
|
|
(1) 第四象限;第四象限;\\
|
|
(2) 第二象限或者第四象限;第一象限或第二象限或者$y$轴正半轴.
|
|
|
|
|
|
021468
|
|
$A\cap B=\{\alpha | 2k \pi+\dfrac{5\pi}{6}<\alpha<2k \pi+\dfrac{7\pi}{6},\ k \in \mathbf{Z} \}$
|
|
|
|
|
|
021469
|
|
\begin{tabular}{|c|c|c|c|c|c|}
|
|
\hline &$P(-5,12)$&$P(0,-6)$&$P(6,0)$&$P(-9,-12)$&$P(1,-\sqrt{3})$\\
|
|
\hline$\sin \alpha$&$\dfrac{12}{13}$ &$-1$ & $0$&$-\dfrac{4}{5}$ &$-\dfrac{\sqrt{3}}2$ \\
|
|
\hline$\cos \alpha$&$-\dfrac{5}{13}$ &$0$ & $1$&$-\dfrac{3}{5}$ &$\dfrac 12$ \\
|
|
\hline$\tan \alpha$&$-\dfrac{12}{5}$ &不存在 & $0$&$\dfrac{4}{3}$ &$-\sqrt{3}$ \\
|
|
\hline$\cot \alpha$&$-\dfrac{5}{12}$ &$0$ & 不存在 &$\dfrac {3}{4}$ &$-\dfrac{\sqrt{3}}3$ \\
|
|
\hline
|
|
\end{tabular}
|
|
|
|
|
|
040018
|
|
(1) $\dfrac{\pi}{4}$; (2) $\dfrac{\pi}{6}$; (3) $\dfrac{\pi}{10}$; (4) $\dfrac{\pi}{3}$; (5) $\dfrac{5\pi}{12}$; (6) $\dfrac{\pi}{15}$
|
|
|
|
|
|
040019
|
|
(1) $60^{\circ}$; (2) $36^{\circ}$; (3) $45^{\circ}$; (4) $75^{\circ}$; (5) $40^{\circ}$; (6) $54^{\circ}$
|
|
|
|
|
|
040020
|
|
(1) $2k\pi+\dfrac{\pi}{2}$; (2) $2k\pi+\dfrac{3\pi}{2}$; (3) $2k\pi+\dfrac{7\pi}{6}$; (4) $k\pi+\dfrac{\pi}{4}$; (5) $\dfrac{k\pi}{2}+\dfrac{\pi}{6}$
|
|
|
|
|
|
040021
|
|
(1) $k \times 360^{\circ}+60^{\circ}$;\\
|
|
(2) $k \times 360^{\circ}+330^{\circ}$; \\
|
|
(3) $k \times 360^{\circ}-210^{\circ}$; \\
|
|
(4) $k \times 180^{\circ}-45^{\circ}$; \\
|
|
(5) $k \times 90^{\circ}+50^{\circ}$
|
|
|
|
|
|
040022
|
|
(1) $330^{\circ}$; (2) $240^{\circ}$; (3) $210^{\circ}$; (4) $300^{\circ}$
|
|
|
|
|
|
040023
|
|
(1) $\dfrac{4\pi}{3}$; (2) $\dfrac{11\pi}{6}$; (3) $10-2\pi$; (4) $-10+4\pi$
|
|
|
|
|
|
040024
|
|
$18$
|
|
|
|
|
|
040025
|
|
$3$,$-2$
|
|
|
|
|
|
040026
|
|
(1) $1037$; (2) $-4k+53$; (3) $500$
|
|
|
|
|
|
040027
|
|
$-2n+10$
|
|
|
|
|
|
040028
|
|
15
|
|
|
|
|
|
040029
|
|
$7$
|
|
|
|
|
|
040030
|
|
$(4,\dfrac{14}{3}]$
|
|
|
|
|
|
040031
|
|
$2n-1$
|
|
|
|
|
|
040032
|
|
$(3,\dfrac{35}{9})$或$(\dfrac{35}{9},3)$
|
|
|
|
|
|
040033
|
|
$200$
|
|
|
|
|
|
040034
|
|
略
|
|
|
|
|
|
040035
|
|
$a_n=\begin{cases}1, & n=1,\\ 2n, & n=2k, \\ 2n-2, & n=2k+1\end{cases}$($k\in \mathbf{N}$, $k\ge 1$)
|
|
|
|
|
|
040036
|
|
$6n-3$
|
|
|
|
|
|
040057
|
|
$\dfrac{19}{28}\sqrt{7}$
|
|
|
|
|
|
040058
|
|
$\dfrac{79}{156}$
|
|
|
|
|
|
040059
|
|
$2$
|
|
|
|
|
|
040060
|
|
$-\dfrac{\sqrt{1-m^2}}{m}$
|
|
|
|
|
|
040061
|
|
$-\dfrac{1}{5}, \dfrac{1}{5}$
|
|
|
|
|
|
040062
|
|
$-\dfrac{1}{3}, 3$
|
|
|
|
|
|
040063
|
|
$\dfrac{1}{2}, -2$
|
|
|
|
|
|
040064
|
|
$\dfrac{\sqrt{6}}{3}$
|
|
|
|
|
|
040065
|
|
$\dfrac{1}{3}, -\dfrac{9}{4}$
|
|
|
|
|
|
040066
|
|
$\dfrac{1}{3}, \dfrac{7}{9}$
|
|
|
|
|
|
040067
|
|
$\pm\dfrac{\sqrt{2}}{3}$
|
|
|
|
|
|
040068
|
|
$\dfrac{1}{4}, \dfrac{2}{5}$
|
|
|
|
|
|
040069
|
|
$\dfrac{1-\sqrt{17}}{4}$
|
|
|
|
|
|
040070
|
|
(1) 三; (2) 三
|
|
|
|
|
|
040071
|
|
(1) $[-\dfrac{1}{2},\dfrac{1}{2})\cup\{1\}$; (2) $[-\dfrac{\pi}{3},\dfrac{\pi}{3})$; (3) $\{-\dfrac{1}{2}\}$
|
|
|
|
|
|
040072
|
|
(1) $-\tan \alpha-\cot \alpha$; (2) $-\dfrac{\sqrt{2}}{\sin \alpha}$; (3) $-1$; (4) $0$
|
|
|
|
|
|
040073
|
|
略
|
|
|
|
|
|
040074
|
|
$-\dfrac{10}{9}$
|
|
|
|
|
|
040075
|
|
$a_n=\dfrac{1}{3n-2}$
|
|
|
|
|
|
040076
|
|
$a_n=\dfrac{1}{n}$
|
|
|
|
|
|
040077
|
|
$(n-\dfrac{4}{5})5^n$
|
|
|
|
|
|
040078
|
|
$2^{n+1}-3$
|
|
|
|
|
|
040079
|
|
$1078$
|
|
|
|
|
|
040080
|
|
$S_n=\begin{cases}\dfrac{n^2}{2}+n-\dfrac 23+\dfrac 23\cdot 2^n, & n\text{为偶数},\\ \dfrac{n^2}{2}-\dfrac 76+\dfrac 23\cdot 2^{n+1}, & n\text{为奇数} \end{cases}$
|
|
|
|
|
|
040081
|
|
(1) 略; (2) $n^2$
|
|
|
|
|
|
040082
|
|
(1) 不存在; (2) 存在, 如$c_n=2^{n-1}$
|
|
|
|
|
|
040083
|
|
$\dfrac{\sqrt{3}}{2}$
|
|
|
|
|
|
040084
|
|
$0$
|
|
|
|
|
|
040085
|
|
$\{0,-2\pi\}$
|
|
|
|
|
|
040086
|
|
$-\dfrac{\pi}6,\dfrac 56\pi$
|
|
|
|
|
|
040087
|
|
$\cot \alpha$
|
|
|
|
|
|
040088
|
|
$7+4\sqrt{3}$
|
|
|
|
|
|
040089
|
|
$\dfrac{\sqrt{2}-\sqrt{6}}{4}$
|
|
|
|
|
|
040090
|
|
$\dfrac{\sqrt{3}+\sqrt{35}}{12}$
|
|
|
|
|
|
040091
|
|
$\dfrac 12$
|
|
|
|
|
|
040092
|
|
$5$
|
|
|
|
|
|
040093
|
|
$-\dfrac 12$
|
|
|
|
|
|
040094
|
|
$\dfrac{\pi}{12}$
|
|
|
|
|
|
040095
|
|
$\{x|x=\pm\frac 23 \pi+2k\pi,k \in \mathbf{Z}\}$
|
|
|
|
|
|
040096
|
|
$\dfrac 43 \pi$
|
|
|
|
|
|
040097
|
|
$\textcircled{4}$
|
|
|
|
|
|
040098
|
|
C
|
|
|
|
|
|
040099
|
|
$\dfrac{-2\sqrt{2}-\sqrt{3}}6$
|
|
|
|
|
|
040100
|
|
$-\dfrac 7{25}$
|
|
|
|
|
|
040101
|
|
$-\dfrac {\pi}3$
|
|
|
|
|
|
040102
|
|
$(-\dfrac {12}{13}, \dfrac{5}{13})$
|
|
|
|
|
|
040103
|
|
$(\dfrac {5-12\sqrt{3}}{2}, \dfrac{12-5\sqrt{3}}{2})$
|
|
|
|
|
|
040104
|
|
略
|
|
|
|
|