This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具v4/文本文件/metadata.txt

138 lines
4.0 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

ans
023638
$20\mathrm{m}/\mathrm{s}$
019054
(1) $f'(10)=-10^4$; (2) 实际意义是细菌数量在$t=10$时的瞬时变化率, 它表明在$t=10$附近, 细菌数量大约以每小时$10^4$的速率减少
019058
(1) $-\dfrac{8}{15}{}^\circ\mathrm{C}/\mathrm{min}$; (2) 约$5.95\text{min}$之后($2\sqrt{30}-5$)
009905
(1) $30\mathrm{m}/\mathrm{s}$; (2) $30\mathrm{m}/\mathrm{s}$; (3) $10 a\mathrm{m}/\mathrm{s}$
019055
约$334.2\text{km}/\text{h}$
019056
$x=2$时瞬时变化率为$-3^\circ/\mathrm{h}$, $x=6$时瞬时变化率为$5^\circ/\mathrm{h}$, 意义分别为: 在$2$小时后的这一时刻, 原油温度以每小时$3$摄氏度的速度下降, 在$6$小时后的这一时刻, 原油温度以每小时$5$摄氏度的速度上升
021372
(1)$40\text{m/s}$(2)$40\text{m/s}$(3)$10a\text{m/s}$
023639
(1) $1-\sqrt{2}$; (2) 斜率逐渐减小, 并趋近于$-1$
019059
$y=2x-1$
019060
$y=0$
019061
(1) $E,F$; (2) $A,B,C$; (3) $D,B$; (4) $B$; (5) $D$
019062
$(-2,4)$
009907
$y=-6x-3$; $y=6x-3$
009908
(1) 正(图像略); (2) 负(图像略)
019064
$-\dfrac{1}{4}$
024841
(1) $2x^2$; (2) $-x^{-2}$; (3) $\dfrac{1}{2}x^{-\frac{1}{2}}$
019065
$x=\dfrac{\pi}{2}+k\pi$, $k\in \mathbf{Z}$
019066
(1) $y=\dfrac{1}{\mathrm{e}}x$; (2) $y=x-1$, 切点坐标为$(1,0)$
009909
$y'=2x+3$
009910
(1) $f'(x)=\dfrac{2}{3}x^{-\frac{1}{3}}$; (2) $f'(x)=\pi x^{\pi-1}$
009911
$-1$
019067
(1) $y'=2x+1$; (2) $y'=2x-1$
023641
(1) 不存在, 理由略; (2) $b=\pm 2$
024840
$y=2x-1$或$y=10x-25$
023643
$-2$
000120
(1) 偶函数, 理由略; (2) 奇函数, 理由略; (3) 偶函数, 理由略; (4) 既非奇函数又非偶函数, 理由略
000121
$\dfrac{\pi}{6}$
000122
(1) 单调增区间: $[-\dfrac{3\pi}{4}+k\pi,-\dfrac{\pi}{4}+k\pi]$, $k\in \mathbf{Z}$, 单调减区间: $[-\dfrac{\pi}{4}+k\pi,\dfrac{\pi}{4}+k\pi]$, $k\in \mathbf{Z}$;\\
(2) 单调增区间: $[-\dfrac{5\pi}{6}+2k\pi,\dfrac{\pi}{6}+2k\pi]$, $k\in \mathbf{Z}$, 单调减区间: $[\dfrac{\pi}{6}+2k\pi,\dfrac{7\pi}{6}+2k\pi]$, $k\in \mathbf{Z}$;\\
(3) 单调增区间: $[-\dfrac{3\pi}{2}+4k\pi,\dfrac{\pi}{2}+4k\pi]$, $k\in \mathbf{Z}$, 单调减区间: $[\dfrac{\pi}{2}+4k\pi,\dfrac{5\pi}{2}+4k\pi]$, $k\in \mathbf{Z}$;\\
(4) 单调增区间: $(-\dfrac{3\pi}{8}+\dfrac{k\pi}{2},\dfrac{\pi}{8}+\dfrac{k\pi}{2})$, $k\in \mathbf{Z}$
000123
\begin{tikzpicture}[>=latex]
\draw [->] (-5,0) -- (5,0) node [below] {$x$};
\draw [->] (0,-2.5) -- (0,2.5) node [left] {$y$};
\draw (0,0) node [below left] {$O$};
\draw [domain = -5:5, samples = 200] plot (\x,{2*sin(2*\x/pi*180+60)});
\draw ({pi/3},0) node [below left = (0 and -0.2)] {$\frac{\pi}{3}$};
\draw ({5*pi/6},0) node [below right = (0 and -0.2)] {$\frac{5\pi}{6}$};
\draw ({-pi/6},0) node [above left = (0 and -0.2)] {$-\frac{\pi}{6}$};
\draw [dashed] ({pi/12},0) --++ (0,2) -- (0,2) node [left] {$2$};
\end{tikzpicture}
000124
$y=3\sin(3x+\dfrac{\pi}{6})$
000125
(1) 最大值为$0$, 取得最大值的$x$的值为$2k\pi$, $k\in \mathbf{Z}$; 最小值为$-\dfrac{9}{4}$, 取得最小值的$x$的值为$\pm\dfrac{2\pi}{3}+2k\pi$, $k\in \mathbf{Z}$;\\
(2) 最大值为$1$, 取得最大值的$x$的值为$\dfrac{\pi}{4}$; 最小值为$-1$, 取得最小值的$x$的值为$-\dfrac{\pi}{4}$;\\
(3) 最大值为$3$, 取得最大值的$x$的值为$-\dfrac{\pi}{4}+k\pi$, $k\in \mathbf{Z}$; 最小值为$-1$, 取得最小值的$x$的值为$\dfrac{\pi}{4}+k\pi$, $k\in \mathbf{Z}$;\\
(4) 最大值为$1$, 取得最大值的$x$的值为$\dfrac{\pi}{6}$; 最小值为$\dfrac{1}{2}$, 取得最小值的$x$的值为$-\dfrac{\pi}{6}$
000126
(1) 最大问差为$4^\circ$; (2) 在$10$点到$18$点之间实验室需要降温
000127
$\pi$
000128
$(\dfrac{\pi}{4},\dfrac{5\pi}{4})$
000129
(1) 最大值为$\sqrt{2}$, 取得最大值的$x$的值为$\dfrac{3\pi}{8}+k\pi$, $k\in \mathbf{Z}$; (2) 最大值为$\dfrac{1+\sqrt{3}}{2}$, 取得最大值的$x$的值为$\dfrac{4\pi}{3}$
000130
$\dfrac{3}{4}$
000135
$\dfrac{2}{3}$
000137
(1) $f(x)=6-x$; (2) $k=\pm \dfrac{1}{7}$
018467
(1) $A=2$, $\omega = 2$, $\varphi = \dfrac{2\pi}{3}$; (2) 最大值为$\sqrt{3}$, 最小值为$-2$
018468
$(0,\dfrac{3}{4}]$