录入2025届周末卷08补充题目并关联相似

This commit is contained in:
weiye.wang 2024-01-06 20:46:46 +08:00
parent fc36050761
commit 428d1b1aa4
1 changed files with 345 additions and 1 deletions

View File

@ -55629,7 +55629,9 @@
"20220625\t王伟叶" "20220625\t王伟叶"
], ],
"same": [], "same": [],
"related": [], "related": [
"023219"
],
"remark": "", "remark": "",
"space": "", "space": "",
"unrelated": [] "unrelated": []
@ -621523,6 +621525,348 @@
"space": "4em", "space": "4em",
"unrelated": [] "unrelated": []
}, },
"023207": {
"id": "023207",
"content": "长方体交于一点的三个面的面积是 $6$、$12$、$8$, 则它的对角线长是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023208": {
"id": "023208",
"content": "正方体 $ABCD-A_1B_1C_1D_1$ 中, $BC_1$ 与平面 $AB_1C$ 所成角的正弦值为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023209": {
"id": "023209",
"content": "在棱长为 $2$ 的正方体 $ABCD-A_1B_1C_1D_1$ 中, $E$ 是 $BC_1$ 的中点. 则直线 $DE$ 与平面 $ABCD$ 所成角的大小为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023210": {
"id": "023210",
"content": "四面体 $ABCL$ 的各棱长都相等, $M, N$ 分别为 $BC, AD$ 的中点, 则异面直线 $AM$ 与 $CN$ 所成角的大小为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023211": {
"id": "023211",
"content": "长方体的一条对角线与过同一顶点的三个面中的两个面所成角为 $\\mathbf{30 ^{\\circ}}$ 和 $\\mathbf{45 ^{\\circ}}$, 则这条对角线与第三个面所成角的大小是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023212": {
"id": "023212",
"content": "若斜三棱柱的侧棱长是 15 , 侧棱与底面的夹角为 $60^{\\circ}$, 则此棱柱的高是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023213": {
"id": "023213",
"content": "圆柱的侧面展开图是边长为 $2 \\pi$ 和 $3 \\pi$ 的矩形, 则圆柱的体积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023214": {
"id": "023214",
"content": "圆锥的侧面展开图是半径为 $a$ 的半圆, 这个圆锥的高为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023215": {
"id": "023215",
"content": "若圆锥的全面积是底面积的三倍, 则它的侧面展开图的圆心角是\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023216": {
"id": "023216",
"content": "圆锥的轴截面是一个直角三角形, 那么它的侧面积与底面积之比为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023217": {
"id": "023217",
"content": "过棱锥高的两个三等分点作平行于底面的截面, 设两个截面面积及底面面积分别为 $S_1, S_2, S_3$($S_1<S_2$), 则 $S_1: S_2: S_3=$\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023218": {
"id": "023218",
"content": "圆锥的轴截面为直角三角形 $SAB, S$ 是圆锥的顶点, $O$ 是底面的中心. $Q$ 为底面上一点, 若 $\\angle AOQ=60^{\\circ}$, $QB=2 \\sqrt{3}$, 则此圆锥的体积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023219": {
"id": "023219",
"content": "三个全等的, 边长分别为 $3,4,5$ 的直角三角形分别绕三条长度不同的边旋转, 所得几何体的体积之比为\\blank{50}. (从小到大排列)",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [
"001718"
],
"remark": "",
"space": "",
"unrelated": []
},
"023220": {
"id": "023220",
"content": "三棱锥一条侧棱长是 $16 \\mathrm{cm}$, 和这条棱相对的棱长是 $18 \\mathrm{cm}$, 其余四条棱长都是 $17 \\mathrm{cm}$, 则棱锥的体积为\\blank{50}.",
"objs": [],
"tags": [],
"genre": "填空题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "",
"unrelated": []
},
"023221": {
"id": "023221",
"content": "已知正方体 $ABCD-A_1B_1C_1D_1$, 棱长为 $1$. 在线段 $A_1C_1$ 上任取一点 $P$, 设二面角 $P-AB-D$ 的大小为 $\\alpha$, 二面角 $P-BC-D$ 的大小为 $\\beta$, 且 $\\theta=\\alpha+\\beta$. 请判断当点 $P$ 在线段 $A_1C_1$ 上运动时, $\\theta$ 有无最小值. 若有最小值, 请求出 $\\theta$ 最小值并说明点 $P$ 的位置; 若无最小值, 请说明理由.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\def\\l{2}\n\\draw (0,0,0) node [below left] {$A$} coordinate (A);\n\\draw (A) ++ (\\l,0,0) node [below right] {$B$} coordinate (B);\n\\draw (A) ++ (\\l,0,-\\l) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,0,-\\l) node [left] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C);\n\\draw [dashed] (A) -- (D) -- (C);\n\\draw (A) ++ (0,\\l,0) node [left] {$A_1$} coordinate (A_1);\n\\draw (B) ++ (0,\\l,0) node [right] {$B_1$} coordinate (B_1);\n\\draw (C) ++ (0,\\l,0) node [above right] {$C_1$} coordinate (C_1);\n\\draw (D) ++ (0,\\l,0) node [above left] {$D_1$} coordinate (D_1);\n\\draw (A_1) -- (B_1) -- (C_1) -- (D_1) -- cycle;\n\\draw (A) -- (A_1) (B) -- (B_1) (C) -- (C_1);\n\\draw [dashed] (D) -- (D_1);\n\\draw ($(A_1)!0.4!(C_1)$) node [above] {$P$} coordinate (P);\n\\draw (A_1)--(C_1);\n\\draw [dashed] (P)--(A)(P)--(B)(P)--(C);\n\\end{tikzpicture}\n\\end{center}",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023222": {
"id": "023222",
"content": "已知四面体 $ABCD$ 的体积可以用公式 $V=\\dfrac{1}{6}a b h \\sin \\theta$, 其中 $a, b$ 表示异面的两条棱的长度, $h$ 表示这两条棱的距离, $\\theta$ 表示这两条棱所成的角. 证明该体积公式成立.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"023223": {
"id": "023223",
"content": "如图, 在圆锥 $PO$ 中, $AB$ 是底面直径, 点 $C$ 是圆 $O$ 上异于 $A, B$ 的一点, $D$ 为线段 $AC$ 的中点, 已知 $PO=OB=1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex, scale = 2]\n\\draw (0,0) node [above left] {$O$} coordinate (O);\n\\draw (-1,0) node [left] {$A$} coordinate (A);\n\\draw (1,0) node [right] {$B$} coordinate (B);\n\\draw (0,1) node [above] {$P$} coordinate (P);\n\\draw (-60:1 and 0.25) node [below] {$C$} coordinate (C);\n\\draw ($(A)!0.5!(C)$) node [below] {$D$} coordinate (D);\n\\draw ($(P)!0.1!(B)$) node [above right] {$F$} coordinate (F);\n\\draw ($(P)!{0.1+sqrt(2)/2}!(B)$) node [above right] {$E$} coordinate (E);\n\\draw (A) arc (180:360:1 and 0.25) -- (P)--(A)(P)--(C);\n\\draw [dashed] (A) arc (180:0:1 and 0.25) (P)--(O)(A)--(B);\n\\draw [dashed] (A)--(C)--(O)(P)--(D)--(O);\n\\draw [dashed] (F)--(O)(F)--(C)(E)--(O)(E)--(C);\n\\end{tikzpicture}\n\\end{center}\n(1) 求证: $AC \\perp$ 平面 $PDO$;\\\\\n(2) 当三棱锥 $P-ABC$ 体积最大时, 求 $PD$ 和 $BC$ 所成角;\\\\\n(3) 若 $BC=1$, 点 $E, F$ 在线段 $PB$ 上移动, 且 $EF=1$, 试问三棱锥 $F-OCE$ 的体积是否为定值? 若是, 求出该定值; 若不是, 说明理由.",
"objs": [],
"tags": [],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "25届周末卷补充题目",
"edit": [
"20240106\t杨懿荔"
],
"same": [],
"related": [],
"remark": "",
"space": "4em",
"unrelated": []
},
"030001": { "030001": {
"id": "030001", "id": "030001",
"content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.", "content": "若$x,y,z$都是实数, 则:(填写``\\textcircled{1} 充分非必要、\\textcircled{2} 必要非充分、\\textcircled{3} 充要、\\textcircled{4} 既非充分又非必要''之一)\\\\\n(1) ``$xy=0$''是``$x=0$''的\\blank{50}条件;\\\\\n(2) ``$x\\cdot y=y\\cdot z$''是``$x=z$''的\\blank{50}条件;\\\\\n(3) ``$\\dfrac xy=\\dfrac yz$''是``$xz=y^2$''的\\blank{50}条件;\\\\\n(4) ``$|x |>| y|$''是``$x>y>0$''的\\blank{50}条件;\\\\\n(5) ``$x^2>4$''是``$x>2$'' 的\\blank{50}条件;\\\\\n(6) ``$x=-3$''是``$x^2+x-6=0$'' 的\\blank{50}条件;\\\\\n(7) ``$|x+y|<2$''是``$|x|<1$且$|y|<1$'' 的\\blank{50}条件;\\\\\n(8) ``$|x|<3$''是``$x^2<9$'' 的\\blank{50}条件;\\\\\n(9) ``$x^2+y^2>0$''是``$x\\ne 0$'' 的\\blank{50}条件;\\\\\n(10) ``$\\dfrac{x^2+x+1}{3x+2}<0$''是``$3x+2<0$'' 的\\blank{50}条件;\\\\\n(11) ``$0<x<3$''是``$|x-1|<2$'' 的\\blank{50}条件.",