修改23349,23428,32027题面
This commit is contained in:
parent
e010f719d0
commit
86cd11aabd
|
|
@ -625826,7 +625826,7 @@
|
|||
},
|
||||
"023349": {
|
||||
"id": "023349",
|
||||
"content": "设 $S_n$ 是等差数列 $\\{a_n\\}$ 的前 $n$ 项和, 数列 $\\{b_n\\}$ 满足 $b_n=n-(-1)^n S_n$, $a_1+b_1=3$, $a_2-b_2=5$.\\\\\n(1) 求数列 $\\{b_n\\}$ 的通项公式;\\\\\n(2) 设数列 $\\{b_n\\}$ 的前 $n$ 项和为 $T_n$,\\\\\n\\textcircled{1} 求 $T_{10}$ ; \\\\\n\\textcircled{2} 若集合 $A=\\{n | n \\leq 100$ 且 $T_n \\leq 100$, $n \\in \\mathbb{N}, n \\geq 1\\}$ , 求集合 $A$ 中所有元素的和.",
|
||||
"content": "设 $S_n$ 是等差数列 $\\{a_n\\}$ 的前 $n$ 项和, 数列 $\\{b_n\\}$ 满足 $b_n=n-(-1)^n S_n$, $a_1+b_1=3$, $a_2-b_2=5$.\\\\\n(1) 求数列 $\\{b_n\\}$ 的通项公式;\\\\\n(2) 设数列 $\\{b_n\\}$ 的前 $n$ 项和为 $T_n$,\\\\\n\\textcircled{1} 求 $T_{10}$ ; \\\\\n\\textcircled{2} 若集合 $A=\\{n | n \\leq 100$ 且 $T_n \\leq 100$, $n \\in \\mathbf{N}, n \\geq 1\\}$ , 求集合 $A$ 中所有元素的和.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "解答题",
|
||||
|
|
@ -625836,7 +625836,8 @@
|
|||
"usages": [],
|
||||
"origin": "25届周末卷补充题目",
|
||||
"edit": [
|
||||
"20240107\t杨懿荔"
|
||||
"20240107\t杨懿荔",
|
||||
"20240110\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
|
|
@ -627470,7 +627471,7 @@
|
|||
},
|
||||
"023428": {
|
||||
"id": "023428",
|
||||
"content": "若幂函数 $y=x^{(-1)^k\\dfrac{n}{m}}$($m, n, k \\in \\mathbf{N}$, $m$、$n$、$k>0$, $m, n$ 互质)的图像在一、二象限, 不过原点, 则 $k, m, n$ 奇偶性为\\blank{50}.",
|
||||
"content": "若幂函数 $y=x^{(-1)^k\\frac{n}{m}}$($m, n, k \\in \\mathbf{N}$, $m$、$n$、$k>0$, $m, n$ 互质)的图像在一、二象限, 不过原点, 则 $k, m, n$ 奇偶性为\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
|
|
@ -627480,7 +627481,8 @@
|
|||
"usages": [],
|
||||
"origin": "26届寒假作业补充题目",
|
||||
"edit": [
|
||||
"20240108\t王伟叶"
|
||||
"20240108\t王伟叶",
|
||||
"20240110\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
|
|
@ -683672,7 +683674,7 @@
|
|||
},
|
||||
"032027": {
|
||||
"id": "032027",
|
||||
"content": "函数 $f(x)=\\cos (\\omega x+\\varphi) \\, \\varphi \\in(0,2 \\pi)$ 在 $x \\in \\mathbf{R}$ 上是单调增函数, 且图像关于原点对称, 则满足条件的数对 $(\\omega, \\varphi)=$\\blank{50}.",
|
||||
"content": "函数 $f(x)=\\cos (\\omega x+\\varphi)$, $\\varphi \\in(0,2 \\pi)$ 在 $x \\in \\mathbf{R}$ 上是单调增函数, 且图像关于原点对称, 则满足条件的数对 $(\\omega, \\varphi)=$\\blank{50}.",
|
||||
"objs": [],
|
||||
"tags": [],
|
||||
"genre": "填空题",
|
||||
|
|
@ -683695,7 +683697,8 @@
|
|||
],
|
||||
"origin": "2024届杨浦区一模试题10",
|
||||
"edit": [
|
||||
"20231223\t王伟叶, 毛培菁"
|
||||
"20231223\t王伟叶, 毛培菁",
|
||||
"20240110\t王伟叶"
|
||||
],
|
||||
"same": [],
|
||||
"related": [],
|
||||
|
|
|
|||
Reference in New Issue