20221111 afternoon

This commit is contained in:
Wang Weiye 2022-11-11 16:22:53 +08:00
parent e02555d457
commit 91f4082fb1
4 changed files with 81 additions and 59 deletions

View File

@ -2,51 +2,35 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1 解答题 1\n",
"2 填空题 2\n",
"3 解答题 2\n",
"4 选择题 1\n",
"5 解答题 3\n",
"6 选择题 1\n",
"7 解答题 3\n",
"8 解答题 1\n",
"9 解答题 1\n",
"10 解答题 4\n",
"11 解答题 1\n",
"12 解答题 2\n",
"13 解答题 1\n",
"14 填空题 1\n",
"15 选择题 1\n",
"16 解答题 9\n",
"17 填空题 1\n",
"18 解答题 6\n",
"1 解答题 2\n",
"2 解答题 2\n",
"3 解答题 2\n",
"2 解答题 3\n",
"3 解答题 3\n",
"4 解答题 2\n",
"5 解答题 2\n",
"6 解答题 1\n",
"7 解答题 1\n",
"8 解答题 1\n",
"9 解答题 1\n",
"10 填空题 1\n",
"11 解答题 2\n",
"12 解答题 2\n",
"13 解答题 3\n"
"6 解答题 2\n",
"7 解答题 2\n",
"8 解答题 2\n",
"1 解答题 1\n",
"2 解答题 2\n",
"3 解答题 2\n",
"4 解答题 3\n",
"5 解答题 2\n",
"6 解答题 2\n",
"7 选择题 1\n"
]
}
],
"source": [
"import os,re\n",
"#修改文件名\n",
"filename = r\"C:\\Users\\Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\28_导数的概念及常用公式.tex\"\n",
"filename = r\"C:\\Users\\wang Weiye\\Documents\\wwy sync\\23届\\第一轮复习讲义\\33_.tex\"\n",
"# filename = r\"C:\\Users\\Wang Weiye\\Documents\\wwy sync\\23届\\上学期周末卷\\国庆卷.tex\"\n",
"outputfile = \"临时文件/题目状态.txt\"\n",
"\n",
@ -89,7 +73,7 @@
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.8.8 ('base')",
"display_name": "Python 3.9.7 ('base')",
"language": "python",
"name": "python3"
},
@ -103,12 +87,12 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.8"
"version": "3.9.7"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "d311ffef239beb3b8f3764271728f3972d7b090c974f8e972fcdeedf230299ac"
"hash": "e4cce46d6be9934fbd27f9ca0432556941ea5bdf741d4f4d64c6cd7f8dfa8fba"
}
}
},

View File

@ -2,15 +2,15 @@
"cells": [
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os,re,json,time\n",
"\n",
"\"\"\"---设置原题目id与新题目id---\"\"\"\n",
"old_id = \"1805\"\n",
"new_id = \"30478\"\n",
"old_id = \"30456\"\n",
"new_id = \"30479\"\n",
"\"\"\"---设置完毕---\"\"\"\n",
"\n",
"old_id = old_id.zfill(6)\n",

View File

@ -2,7 +2,7 @@
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 4,
"metadata": {},
"outputs": [
{
@ -13,9 +13,11 @@
"题块 1 处理完毕.\n",
"正在处理题块 2 .\n",
"题块 2 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/33_立体几何中的定量计算_教师_20221109.tex\n",
"正在处理题块 3 .\n",
"题块 3 处理完毕.\n",
"开始编译教师版本pdf文件: 临时文件/测验卷07_教师_20221111.tex\n",
"0\n",
"开始编译学生版本pdf文件: 临时文件/33_立体几何中的定量计算_学生_20221109.tex\n",
"开始编译学生版本pdf文件: 临时文件/测验卷07_学生_20221111.tex\n",
"0\n"
]
}
@ -28,19 +30,19 @@
"\"\"\"---设置模式结束---\"\"\"\n",
"\n",
"\"\"\"---设置模板文件名---\"\"\"\n",
"template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"# template_file = \"模板文件/测验周末卷模板.tex\"\n",
"# template_file = \"模板文件/第一轮复习讲义模板.tex\"\n",
"template_file = \"模板文件/测验周末卷模板.tex\"\n",
"# template_file = \"模板文件/日常选题讲义模板.tex\"\n",
"\"\"\"---设置模板文件名结束---\"\"\"\n",
"\n",
"\"\"\"---设置其他预处理替换命令---\"\"\"\n",
"#2023届第一轮讲义更换标题\n",
"exec_list = [(\"标题数字待处理\",\"33\"),(\"标题文字待处理\",\"立体几何中的定量计算\")] \n",
"enumi_mode = 0\n",
"# exec_list = [(\"标题数字待处理\",\"32\"),(\"标题文字待处理\",\"空间向量的概念与性质及立体几何中的证明问题\")] \n",
"# enumi_mode = 0\n",
"\n",
"#2023届测验卷与周末卷\n",
"# exec_list = [(\"标题替换\",\"线上测验02\")]\n",
"# enumi_mode = 1\n",
"exec_list = [(\"标题替换\",\"测验07\")]\n",
"enumi_mode = 1\n",
"\n",
"# 日常选题讲义\n",
"# exec_list = [(\"标题文字待处理\",\"三角向量复数立几易错题\")] \n",
@ -49,14 +51,15 @@
"\"\"\"---其他预处理替换命令结束---\"\"\"\n",
"\n",
"\"\"\"---设置目标文件名---\"\"\"\n",
"destination_file = \"临时文件/33_立体几何中的定量计算\"\n",
"destination_file = \"临时文件/测验卷07\"\n",
"\"\"\"---设置目标文件名结束---\"\"\"\n",
"\n",
"\n",
"\"\"\"---设置题号数据---\"\"\"\n",
"problems = [\n",
"\"293,304,10721,294,30462,305,299,4096\",\n",
"\"10730,4348,4698,30472,4243,296,30468\"\n",
"\"11028:11029,11032:11033,11035:11039\",\n",
"\"11040:11041,11043\",\n",
"\"11046\"\n",
"\n",
"]\n",
"\"\"\"---设置题号数据结束---\"\"\"\n",

View File

@ -52403,7 +52403,7 @@
},
"001954": {
"id": "001954",
"content": "已知$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$是三个不共面的向量, 向量$\\overrightarrow{AB}=\\overrightarrow{a}$, $\\overrightarrow{AC}=\\overrightarrow{b}$, $\\overrightarrow{AD}=\\overrightarrow{c}$, 若$D$点在平面$ABC$内的射影为$P$, 且$\\overrightarrow{AP}=x\\overrightarrow{a}+y\\overrightarrow{b}$, 则$x=$\\blank{180}.(用$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$之间的积来表示)",
"content": "已知$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$是三个不共面的向量, 向量$\\overrightarrow{AB}=\\overrightarrow{a}$, $\\overrightarrow{AC}=\\overrightarrow{b}$, $\\overrightarrow{AD}=\\overrightarrow{c}$, 若$D$点在平面$ABC$内的射影为$P$, 且$\\overrightarrow{AP}=x\\overrightarrow{a}+y\\overrightarrow{b}$, 则$x=$\\blank{180}.(用$\\overrightarrow{a},\\overrightarrow{b},\\overrightarrow{c}$之间的数量积来表示)",
"objs": [
"K0625003X"
],
@ -52421,7 +52421,8 @@
],
"origin": "2016届创新班作业\t3127-空间向量的分解定理",
"edit": [
"20220625\t王伟叶"
"20220625\t王伟叶",
"20221111\t周双"
],
"same": [],
"related": [],
@ -260102,7 +260103,7 @@
},
"010715": {
"id": "010715",
"content": "如图, 在平行六面体$ABCD-A_1B_1C_1D_1$中, 设$\\overrightarrow{D_1A}=\\overrightarrow a$, $\\overrightarrow{D_1B_1}=\\overrightarrow b$, $\\overrightarrow{D_1C}=\\overrightarrow c$. 试用$\\overrightarrow a$、$\\overrightarrow b$、$\\overrightarrow c$表示$\\overrightarrow{D_1B}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (2,0) node [below right] {$B$} coordinate (B) --++ (45:{2/2}) node [right] {$C$} coordinate (C)\n--++ (0.2,1.5) node [above right] {$C_1$} coordinate (C1)\n--++ (-2,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{2/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (2.2,1.5) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{2/2}) (B1) --++ (-2,0);\n\\draw [dashed] (A) --++ (45:{2/2}) node [left] {$D$} coordinate (D) --++ (2,0) (D) --++ (0.2,1.5);\n\\draw [dashed] (D1) -- (A) (D1) -- (B) (D1) -- (C) (D1) -- (B1);\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 在平行六面体$ABCD-A_1B_1C_1D_1$中, 设$\\overrightarrow{D_1A}=\\overrightarrow a$, $\\overrightarrow{D_1B_1}=\\overrightarrow b$, $\\overrightarrow{D_1C}=\\overrightarrow c$. 试用$\\overrightarrow a$、$\\overrightarrow b$、$\\overrightarrow c$表示$\\overrightarrow{D_1B}$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex]\n\\draw (0,0) node [below left] {$A$} coordinate (A) --++ (2,0) node [below right] {$B$} coordinate (B) --++ (45:{2/2}) node [right] {$C$} coordinate (C)\n--++ (0.2,1.5) node [above right] {$C_1$} coordinate (C1)\n--++ (-2,0) node [above left] {$D_1$} coordinate (D1) --++ (225:{2/2}) node [left] {$A_1$} coordinate (A1) -- cycle;\n\\draw (A) ++ (2.2,1.5) node [right] {$B_1$} coordinate (B1) -- (B) (B1) --++ (45:{2/2}) (B1) --++ (-2,0) (D1) -- (B1);\n\\draw [dashed] (A) --++ (45:{2/2}) node [left] {$D$} coordinate (D) --++ (2,0) (D) --++ (0.2,1.5);\n\\draw [dashed] (D1) -- (A) (D1) -- (B) (D1) -- (C);\n\\end{tikzpicture}\n\\end{center}",
"objs": [
"K0624003X"
],
@ -260117,7 +260118,8 @@
"usages": [],
"origin": "新教材选择性必修第一册习题",
"edit": [
"20220806\t王伟叶"
"20220806\t王伟叶",
"20221111\t周双"
],
"same": [],
"related": [],
@ -260537,7 +260539,7 @@
},
"010733": {
"id": "010733",
"content": "如图, 已知正三棱柱$ABC-A_1B_1C_1$的各条棱长均为$a$, $D$是棱$CC_1$的中点. 求证: 平面$AB_1D\\perp$平面$ABB_1A_1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.3]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,{sqrt(3)}) node [below] {$B$} coordinate (B);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,2,0) node [above] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,2,0) node [right] {$C_1$} coordinate (C1);\n\\draw (B) -- (B1) -- (A1) (B1) -- (C1);\n\\draw (A) -- (B1) -- ($(C)!0.5!(C1)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C) -- (C1) -- (A1) -- cycle;\n\\draw [dashed] (A) -- (D) (A) -- (C);\n\\end{tikzpicture}\n\\end{center}",
"content": "如图, 已知正三棱柱$ABC-A_1B_1C_1$的各条棱长均为$a$, $D$是棱$CC_1$的中点. 用向量法证明: 平面$AB_1D\\perp$平面$ABB_1A_1$.\n\\begin{center}\n\\begin{tikzpicture}[>=latex,scale = 1.3]\n\\draw (0,0,0) node [left] {$A$} coordinate (A);\n\\draw (1,0,{sqrt(3)}) node [below] {$B$} coordinate (B);\n\\draw (2,0,0) node [right] {$C$} coordinate (C);\n\\draw (A) ++ (0,2,0) node [left] {$A_1$} coordinate (A1);\n\\draw (B) ++ (0,2,0) node [above] {$B_1$} coordinate (B1);\n\\draw (C) ++ (0,2,0) node [right] {$C_1$} coordinate (C1);\n\\draw (B) -- (B1) -- (A1) (B1) -- (C1);\n\\draw (A) -- (B1) -- ($(C)!0.5!(C1)$) node [right] {$D$} coordinate (D);\n\\draw (A) -- (B) -- (C) -- (C1) -- (A1) -- cycle;\n\\draw [dashed] (A) -- (D) (A) -- (C);\n\\end{tikzpicture}\n\\end{center}",
"objs": [
"K0628005X"
],
@ -260552,7 +260554,8 @@
"usages": [],
"origin": "新教材选择性必修第一册习题",
"edit": [
"20220806\t王伟叶"
"20220806\t王伟叶",
"20221111\t周双"
],
"same": [],
"related": [],
@ -267800,7 +267803,7 @@
},
"011036": {
"id": "011036",
"content": "若偶函数$y=f(x)$($x\\in \\mathbf{R}$)满足$f(x+2)=f(x-2)$, 当$x\\in [-2,0]$时, $f(x)=(\\dfrac 12)^x-1$, 若$g(x)=f(x)-\\log_a(x+2)$($a>1$)在区间$(-2,6]$上恰有$3$个不同的零点, 则实数$a$的取值范是\\blank{50}",
"content": "若偶函数$y=f(x)$($x\\in \\mathbf{R}$)满足$f(x+2)=f(x-2)$, 当$x\\in [-2,0]$时, $f(x)=(\\dfrac 12)^x-1$, 若$g(x)=f(x)-\\log_a(x+2)$($a>1$)在区间$(-2,6]$上恰有$3$个不同的零点, 则实数$a$的取值范是\\blank{50}",
"objs": [],
"tags": [
"第二单元"
@ -267812,7 +267815,8 @@
"usages": [],
"origin": "2022届高三上学期周末卷9试题9",
"edit": [
"20220817\t王伟叶"
"20220817\t王伟叶",
"20221111\t王伟叶"
],
"same": [],
"related": [],
@ -267906,7 +267910,7 @@
},
"011041": {
"id": "011041",
"content": "若$f(x)$是$\\mathbf{R}$上的奇函数, 且$f(x)$在$[0,+\\infty)$上单调递增, 则下列结论:\\\\\n\\textcircled{1} $y=|f(x)|$是偶函数;\\\\\n\\textcircled{2} 对任意$x\\in \\mathbf{R}$都有$f(-x)+|f(x)|=0$;\\\\\n\\textcircled{3} $y=f(x)f(-x)$在$(-\\infty ,0]$上单调递增;\\\\\n\\textcircled{4} 反函数$y=f^{-1}(x)$存在且在$(-\\infty ,0]$上单调递增.\\\\\n其中正确结论的个数为\\bracket{20}.\n\\fourch{$1$}{$2$}{$3$}{$4$}",
"content": "若$f(x)$是$\\mathbf{R}$上的奇函数, 且$f(x)$在$[0,+\\infty)$上严格递增, 则下列结论:\\\\\n\\textcircled{1} $y=|f(x)|$是偶函数;\\\\\n\\textcircled{2} 对任意$x\\in \\mathbf{R}$都有$f(-x)+|f(x)|=0$;\\\\\n\\textcircled{3} $y=f(x)f(-x)$在$(-\\infty ,0]$上严格递增;\\\\\n\\textcircled{4} 反函数$y=f^{-1}(x)$存在且在$(-\\infty ,0]$上严格递增.\\\\\n其中正确结论的个数为\\bracket{20}.\n\\fourch{$1$}{$2$}{$3$}{$4$}",
"objs": [],
"tags": [
"第二单元"
@ -267918,7 +267922,8 @@
"usages": [],
"origin": "2022届高三上学期周末卷9试题14",
"edit": [
"20220817\t王伟叶"
"20220817\t王伟叶",
"20221111\t王伟叶"
],
"same": [],
"related": [],
@ -308257,7 +308262,9 @@
"20221104\t王伟叶"
],
"same": [],
"related": [],
"related": [
"030479"
],
"remark": "",
"space": "12ex"
},
@ -308813,5 +308820,33 @@
],
"remark": "",
"space": "12ex"
},
"030479": {
"id": "030479",
"content": "以正方体$ABCD-A_1B_1C_1D_1$的对角线的交点为坐标原点$O$建立空间直角坐标系$O-xyz$, 其中$A(1,\\sqrt{2},0)$, $B(-1,\\sqrt{2},0)$, 求点$A_1$的坐标.",
"objs": [
"K0624003X",
"K0627005X"
],
"tags": [
"第六单元",
"空间向量"
],
"genre": "解答题",
"ans": "",
"solution": "",
"duration": -1,
"usages": [],
"origin": "高中数学教与学例题与习题-20221111修改",
"edit": [
"20221104\t王伟叶",
"20221111\t"
],
"same": [],
"related": [
"030456"
],
"remark": "",
"space": "12ex"
}
}