117 lines
1.2 KiB
Plaintext
117 lines
1.2 KiB
Plaintext
ans
|
|
|
|
024831
|
|
$\dfrac{2}{5}$
|
|
|
|
024832
|
|
$2(\cos\dfrac{2\pi}{3}+\mathrm{i}\sin\dfrac{2\pi}{3})$
|
|
|
|
024833
|
|
$\pm \sqrt{2}\mathrm{i}$
|
|
|
|
024834
|
|
$\pm \dfrac{1}{2}$
|
|
|
|
024830
|
|
$2(x+1-\dfrac{\sqrt{2}}{2}\mathrm{i})(x+1+\dfrac{\sqrt{2}}{2}\mathrm{i})$
|
|
|
|
024835
|
|
$\dfrac{\pi}{4}$
|
|
|
|
024836
|
|
$2$
|
|
|
|
024837
|
|
\textcircled{3}\textcircled{5}
|
|
|
|
024838
|
|
$9+\sqrt{2}$
|
|
|
|
024839
|
|
$-\dfrac{15}{2}\pm \dfrac{15\sqrt{3}}{2}\mathrm{i}$
|
|
|
|
040857
|
|
(1) $m=-1$, $|z|=\sqrt{2}$; (2) $(-1,1)$
|
|
|
|
040858
|
|
(1) $m=-2$; (2) $m=\pm 2\sqrt{6}$或$\pm 4\sqrt{3}$
|
|
|
|
040799
|
|
$-1-\mathrm{i}$
|
|
|
|
040800
|
|
$1+\mathrm{i}$
|
|
|
|
040802
|
|
$-1$
|
|
|
|
040792
|
|
$4\pi$
|
|
|
|
040803
|
|
$\pm\sqrt{3}$
|
|
|
|
040804
|
|
\textcircled{4}
|
|
|
|
040805
|
|
内心
|
|
|
|
040807
|
|
C
|
|
|
|
040808
|
|
$|z|$的最小值为$\dfrac{12}{5}$, 此时$z=\dfrac{48}{25}+\dfrac{36}{25}\mathrm{i}$
|
|
|
|
024822
|
|
$0$
|
|
|
|
040753
|
|
$-\mathrm{i}$
|
|
|
|
024823
|
|
$1$
|
|
|
|
040754
|
|
$1+2\mathrm{i}$
|
|
|
|
024824
|
|
$\dfrac{\sqrt{10}}{10}$
|
|
|
|
040758
|
|
$(-\sqrt{3},\sqrt{3})$
|
|
|
|
040760
|
|
$7-\mathrm{i}$或$-7+\mathrm{i}$
|
|
|
|
040801
|
|
$2-\mathrm{i}$
|
|
|
|
040765
|
|
外心
|
|
|
|
040766
|
|
\textcircled{2}\textcircled{4}
|
|
|
|
040806
|
|
C
|
|
|
|
040768
|
|
B
|
|
|
|
024826
|
|
$\sqrt{14}$
|
|
|
|
024827
|
|
$[-\dfrac{2}{5},0]$
|
|
|
|
024828
|
|
$6$
|
|
|
|
040770
|
|
(1) $z\cdot \overline{z}=1$, $\text{Re} z$的范围为$(-\dfrac{1}{2},1)$; (2) 证明略
|
|
|
|
040771
|
|
(1) $-1-\mathrm{i}$; (2) $(-1,-\dfrac{1}{2}]\cup [-\dfrac{1}{5},+\infty)$
|
|
|