113 lines
1.7 KiB
Plaintext
113 lines
1.7 KiB
Plaintext
ans
|
|
|
|
030169
|
|
$2$
|
|
|
|
030273
|
|
$5$
|
|
|
|
001677
|
|
$\dfrac\pi 3$
|
|
|
|
003531
|
|
以$(1,0)$为圆心, $3$为半径的圆
|
|
|
|
003533
|
|
$\{4\mathrm{i}\}$
|
|
|
|
003455
|
|
$\dfrac\pi 3$
|
|
|
|
004092
|
|
B
|
|
|
|
003891
|
|
D
|
|
|
|
001643
|
|
B
|
|
|
|
000182
|
|
$\dfrac{\sqrt{6}}6$
|
|
|
|
000187
|
|
(1) 证明略; (2) 证明略
|
|
|
|
000298
|
|
(1) $\dfrac\pi 3$; (2) $\dfrac 56$
|
|
|
|
003495
|
|
(1) $\arctan\sqrt{2}$; (2) $\dfrac\pi 4$; (3) $\sqrt{2}$
|
|
|
|
004180
|
|
(1) $\dfrac\pi 3$; (2) $\dfrac{\sqrt{2}}2$
|
|
|
|
003500
|
|
(1) $2$; (2) $\arccos \dfrac{\sqrt{2}}4$
|
|
|
|
003462
|
|
(1) 证明略; (2) 当且仅当$\theta=\arcsin\dfrac{\sqrt{3}}3$时, 三角形$AEF$的面积最大, 最大值为$\dfrac 12$
|
|
|
|
001506
|
|
$-1$
|
|
|
|
004125
|
|
$(0,1)$
|
|
|
|
002027
|
|
$\dfrac 8{25}$
|
|
|
|
030152
|
|
$\dfrac 12\pm \dfrac 12\mathrm{i}$
|
|
|
|
004414
|
|
$(3,+\infty)$
|
|
|
|
001013
|
|
$\{(\dfrac{3+\sqrt{5}}2,\dfrac{5+\sqrt{5}}2),(\dfrac{3-\sqrt{5}}2,\dfrac{5-\sqrt{5}}2)\}$
|
|
|
|
003798
|
|
$\dfrac\pi 3$
|
|
|
|
001253
|
|
$[0,\dfrac 43]$
|
|
|
|
001510
|
|
$4\pi$
|
|
|
|
001515
|
|
$-4$或$2$
|
|
|
|
004111
|
|
$[\dfrac 73,\dfrac{13}3)$
|
|
|
|
030153
|
|
$3.985\overrightarrow{OA}+1.690\overrightarrow{OB}$
|
|
|
|
001993
|
|
C
|
|
|
|
004240
|
|
D
|
|
|
|
003645
|
|
C
|
|
|
|
004116
|
|
A
|
|
|
|
004636
|
|
(1) 当$a>2$时, 解集为$(-\infty,-2)\cup (0,+\infty)$; 当$a=2$时, 解集为$\varnothing$; 当$a<2$时, 解集为$(-2,0)$; (2) $(-\infty,\dfrac {34}{15})$
|
|
|
|
001494
|
|
(1) 证明略; (2) $f(x)=98-x$
|
|
|
|
004098
|
|
(1) $AC=\sqrt{7}\text{km}$, $S_{ABCD}=2\sqrt{3}\text{km}^2$; (2) 当且仅当$P$位于弧$\overset\frown{ABC}$的中点时, 改造后的新建筑用地面积最大, 最大面积为$\dfrac{9\sqrt{3}}4\text{km}^2$
|
|
|
|
004424
|
|
(1) $(3,4]$; (2) $(0,1]$上的值域为$\{1\}$, $(1,2]$上的值域为$\{3,4\}$, $(2,3]$上的值域为$\{7,8,9\}$, $(0,n]$上的值域中含有的元素个数为$\dfrac{n(n+1)}2$; (3) $(3,+\infty)$
|
|
|
|
004509
|
|
(1) $[\dfrac 12,+\infty)$; (2) 不是, 证明略; (3) 证明略
|