191 lines
2.1 KiB
Plaintext
191 lines
2.1 KiB
Plaintext
ans
|
|
|
|
012634
|
|
$\{0\}$
|
|
|
|
012635
|
|
$2$
|
|
|
|
012636
|
|
$[-2,1]$
|
|
|
|
012637
|
|
$\pi$
|
|
|
|
012638
|
|
$(-1,1)$
|
|
|
|
012639
|
|
$-672$
|
|
|
|
012640
|
|
$1$
|
|
|
|
012641
|
|
$4$
|
|
|
|
012642
|
|
$\dfrac 29$
|
|
|
|
012643
|
|
$2\sqrt{3}$
|
|
|
|
012644
|
|
$(-\infty,-\dfrac{182}3)$
|
|
|
|
012645
|
|
$\dfrac{29}{13}$
|
|
|
|
012646
|
|
C
|
|
|
|
012647
|
|
C
|
|
|
|
012648
|
|
B
|
|
|
|
012649
|
|
D
|
|
|
|
012650
|
|
(1) 证明略; (2) $\arcsin \dfrac{\sqrt{15}}{15}$
|
|
|
|
012651
|
|
(1) $y+1=0$; (2) 当$0<a<1$时, 函数$y=f(x)$在$(0,1]$及$[\dfrac 1a,+\infty)$上严格增, 在$[1,\dfrac 1a]$上严格减; 当$a=1$时, 函数$y=f(x)$在$(0,+\infty)$上严格增
|
|
|
|
012652
|
|
(1) $200+100\sqrt{3}$米; (2) $2022$万元
|
|
|
|
012653
|
|
(1) $\lambda_1=2$; (2) $x^2+y^2=1$或$x^2-3y^2=1$; (3) 存在, $x_2=1$
|
|
|
|
012654
|
|
(1) $b_1=1$, $b_2=2$, $b_3=3$, $b_4=4$; (2) 存在, $k$的最小值为$17$; (3) 证明略
|
|
|
|
012592
|
|
$1$
|
|
|
|
012593
|
|
$2$
|
|
|
|
012594
|
|
$(1,+\infty)$
|
|
|
|
012595
|
|
$0$
|
|
|
|
012596
|
|
$\pi$
|
|
|
|
012597
|
|
$16$
|
|
|
|
012598
|
|
$60^\circ$
|
|
|
|
012599
|
|
$\dfrac 35$
|
|
|
|
012600
|
|
$0$
|
|
|
|
012601
|
|
$2$
|
|
|
|
012602
|
|
$\dfrac 34$
|
|
|
|
012603
|
|
$k\le 5+3\sqrt{2}$
|
|
|
|
012604
|
|
C
|
|
|
|
012605
|
|
D
|
|
|
|
012606
|
|
B
|
|
|
|
012607
|
|
A
|
|
|
|
012608
|
|
(1) $\dfrac {2\pi}3$; (2) $S=\sin(\theta-\dfrac\pi 3)+\dfrac{\sqrt{3}}2$, $\theta\in (0,\pi)$, $S$的最大值为$1+\dfrac{\sqrt{3}}2$
|
|
|
|
012609
|
|
(1) $58$; (2) $m=2^{k-1}$, 理由略
|
|
|
|
012610
|
|
(1) 证明略; (2) $18$米
|
|
|
|
012611
|
|
(1) 值为$\dfrac 23$, 是定值; (2) $\dfrac{20}3$; (3) $k_1=\dfrac{\sqrt{30}}6$时, $|k_1-k_2|$取到最小值$\dfrac{\sqrt{30}}3$
|
|
|
|
012612
|
|
(1) 具有性质$M$, 理由略; (2) 存在, $c$的范围为$(0,+\infty)$; (3) $3$
|
|
|
|
012529
|
|
$\{2,3,4\}$
|
|
|
|
012530
|
|
$-1$
|
|
|
|
012531
|
|
$23$
|
|
|
|
012532
|
|
$(-3,2)$
|
|
|
|
012533
|
|
$\dfrac 65$
|
|
|
|
012534
|
|
$\dfrac\pi 4$
|
|
|
|
012535
|
|
$3$
|
|
|
|
012536
|
|
$\dfrac 23$
|
|
|
|
012537
|
|
$2\sqrt{30}$
|
|
|
|
012538
|
|
$-\dfrac 35$
|
|
|
|
012539
|
|
$\dfrac{125\pi}{48}$
|
|
|
|
012540
|
|
$(\dfrac{13}{15},\dfrac 76)$
|
|
|
|
012541
|
|
D
|
|
|
|
012542
|
|
A
|
|
|
|
012543
|
|
B
|
|
|
|
012544
|
|
D
|
|
|
|
012545
|
|
(1) $[k\pi-\dfrac\pi 6,k\pi+\dfrac\pi 3]$, $k\in \mathbf{Z}$; (2) 最大值为$\dfrac{\sqrt{3}-1}2$, 最小值为$-\dfrac 32$
|
|
|
|
012546
|
|
(1) 证明略; (2) 证明略
|
|
|
|
012547
|
|
(1) $2480$人; (2) $11$月$11$日新感染者人数最多, 为$630$人
|
|
|
|
012548
|
|
(1) $\dfrac{\sqrt{2}}2$; (2) 过定点$(\dfrac 23,0)$; (3) $\dfrac 19$
|
|
|
|
012549
|
|
(1) $5$; (2) 在定直线$y=2x$上; (3) 当且仅当$a=-\dfrac 2{\mathrm{e}}$时存在, $k=3$, $x_0=2$
|