This repository has been archived on 2024-06-23. You can view files and clone it, but cannot push or open issues or pull requests.
mathdeptv2/工具v4/文本文件/metadata.txt

539 lines
6.9 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

ans
021268
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 标准方程 & 图形 & 顶点 & 对称轴 & 焦点 & 准线 \\
\hline $y^2=2 p x$($p>0$) & \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-0.5,-2) -- (-0.5,2);
\draw [domain = -2:2] plot ({\x*\x/2},\x);
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(\frac{p}{2},0)$ & $x=-\frac{p}{2}$ \\
\hline $y^2=-2 p x$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (0.5,-2) -- (0.5,2);
\draw [domain = -2:2] plot ({-\x*\x/2},\x);
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(-\frac{p}{2},0)$ & $x=\frac{p}{2}$ \\
\hline $x^2=2 p y$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-2,-0.5) -- (2,-0.5);
\draw [domain = -2:2] plot (\x,{\x*\x/2});
\end{tikzpicture}& $(0,0)$ & $y$轴 & $(0,\frac{p}{2})$ & $y=-\frac{p}{2}$ \\
\hline $x^2=-2 p y$($p>0$)&\begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-2,0.5) -- (2,0.5);
\draw [domain = -2:2] plot (\x,-{\x*\x/2});
\end{tikzpicture} & $(0,0)$ & $y$轴 & $(0,-\frac{p}{2})$ & $y=\frac{p}{2}$ \\
\hline
\end{tabular}
\end{center}
021270
$(0,-8)$; $y=8$
021271
$(0,\frac{1}{16})$; $y=-\frac{1}{16}$
021272
$(0,-\frac{1}{6})$; $y=\frac{1}{6}$
041007
(1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$; (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$;
(4) $y^2=16x$或$y^2=-16x$;
(5) $y^2=16x$或$x^2=-12y$.
021276
$\frac{5}{2}$
021279
$(3,\pm 2\sqrt{3})$
021284
$(3,\pm 2\sqrt{6})$
021269
A
021275
$(\frac{m}{4},0)$;$x=-\frac{m}{4}$
041008
$(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$
041009
$y^2=12x$
041010
2
041011
$y^2=-8x$;$m=\pm 2\sqrt{6}$
008929
$x^2=-y,x\in [-1,1]$
041012
(1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$
021278
$(1,\pm 2)$
041013
最小值为$4$, $M(\frac{1}{4},1)$
041014
$x^2=-12y$
021280
$y^2=x$
041015
$y^2=8x$
021304
$\frac{\pi}{2}$
021308
$\frac{11}{2}$
021287
$\frac{45}{8}$
009840
$(\frac{1}{4},0)$;$x=-\frac{1}{4}$
021309
2
021290
$(\frac{1}{2},1)$
021291
$y^2=2x$或$y^2=6x$
041016
相切
021339
$x^2-x+y^2=0(x\neq 0)$
021289
$4\sqrt{3}$
021293
3
021294
$(4,2)$
021295
$-4$
021305
$y^2=\pm 4x$
013106
$[-1,1]$
021292
B
008930
$0$或$-\frac{1}{2}$
008934
$4x-y-15=0$
008922
$y=\frac{1}{4},x>\frac{1}{16}$
021299
2
021300
$2\sqrt{15}$
021321
(1) 定点$(2,0)$;(2) 4
041017
(1) 6; (2) $\frac{1}{32}$
041018
8
021316
$\frac{11}{4}$
021326
8
021319
$y=\pm \frac{\sqrt{3}}{3}x+1$
041019
$\frac{2}{p}$
041020
D
041021
(1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$
021331
D
041022
C
041023
必要不充分
021334
$y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$
021335
$y=-2x^2+8x-4$
021336
$y^2=8x-16$
021337
$x^2+y^2=1$
021338
$3x+y-4=0(x \neq 1)$
021340
$(x-1)^2+(y-2)^2=\frac{1}{9}$
021341
$x+2y-5=0$
021342
$x^2+y^2=4(x>0,y>0)$
021343
$(x-3)^2=10y-15$
041024
C
008846
0或$-\frac{1}{2}$
008847
$\frac{3}{2}$
008852
0或$\frac{1}{4}$或$-\frac{1}{2}$
008853
$[-4,4]]$
041025
(2) $13x-2y=0$
041026
$(-3,5),(1,1)$
041027
$k<-2$或$k>2$或$k=\pm \sqrt{3}$
010704
$(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$
010703
当$0<k<1$时,轨迹为椭圆;当$k>1$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线
021348
$x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$
021349
0
021351
$\frac{\pi}{3}$或$\frac{2\pi}{3}$
041028
$(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$
021352
4
021353
D
041029
$x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
021354
(1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$
021355
$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线
009845
$x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
009846
$x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$
021358
6
021359
$\sqrt{17}$
021362
$(3\sqrt{2},\sqrt{2})$
021363
最大值7; 最小值$\frac{3\sqrt{15}-4}{4}$
021364
$\sqrt{33}+2\sqrt{6}$
012470
B
041030
B
041031
A
041032
$(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$
041033
13
041034
$\frac{1+2\sqrt{21}}{3}$
041035
$y=\pm 1$
041036
$y^2=2x-2$
041037
$7\sqrt{3}$
041038
(1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆
$\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$
041039
(1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$;
(2) 点 $T$ 不在曲线 $\Gamma$ 上
ans
041073
(-2,$\dfrac{1}{2}$)
041074
$x-8y=0(x<-\dfrac{8}{15}\sqrt{15}$或$x>\dfrac{8}{15}\sqrt{15}$)
041075
$(-\infty,-1)\cup(1,+\infty)$
041076
$[3+2\sqrt{3},+\infty)$
041077
$2\sqrt{10}$
041078
44
002112
$y^2=4x$
002409
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
041079
$\pm 2\sqrt{6}$
041080
(5,0)
041081
$\dfrac{23}{24}$
041082
176.0
041083
$|PA|_{\min}=\begin{cases}
a,0<a\leq1\\
\sqrt{2a-1},a>1
\end{cases}$
041084
不存在
041085
(1)$m_A=91.5,m_B=90\\(2)S^2_A<S^2_B,A$稳定\\(3)$\dfrac{4}{5}$
041086
(1)$1<a<\sqrt{10}\\(2)l:x=3$或$x=\pm \dfrac{5}{7}\sqrt{7}+3$
041087
(1)$d=2$\\(2)$P$不存在\\(3)$l:x=\pm \sqrt{2}y+2$
002112
$y^2=4x$
002409
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
041079
$\pm 2\sqrt{6}$
041080
$(5,0)$
041088
$2x\pm \sqrt{3}y-2=0$
003441
$\dfrac{11}{4}$
041089
$2x+y-2=0$
041090
$(2,2)$
041091
1$\quad(\dfrac{1}{9},\dfrac{2}{3})$
041092
$48$
041093
C
041094
$S_{max}=30$此时$P(8,4)$
041095
(1)$x_B+x_C=11\\y_B+y_C=-4$\\(2)$BC:y=-4x+20$\\(3)$B(\dfrac{11-\sqrt{21}}{2},-2+2\sqrt{21})$\\C($\dfrac{11+\sqrt{21}}{2},-2-2\sqrt{21})$
041096
$(1)C_2:\dfrac{y^2}{4}-\dfrac{x^2}{3}=1\\(2)p>\dfrac{4}{3}\sqrt{3},\quad \overrightarrow{FA}\cdot \overrightarrow{FB}_{max}=9,\quad$此时$p=2\sqrt{3}$\\(3)$p=2\sqrt{3}$
041097
$(-\infty,-2)$
041098
$\dfrac{1}{2}$
041099
(2)(3)(4)
018928
7
041100
AD,CD
041101
(3)(4)
041102
$\pm 2$
041103
$y^2-\dfrac{x^2}{48}=1\quad(y<0)$
041104
4或2或$\dfrac{3}{2}$
041105
(2)
023553
(1)$\dfrac{17}{45}$\\(2)一级6箱二级2箱\\(3)预估287.69克
041106
$[\dfrac{1}{3},1)\cup(1,3]$
018949
没有被抓的风险
041107
(1)$\dfrac{x^2}{24}+\dfrac{y^2}{20}=1\\S_{max}=\dfrac{5\sqrt{30}}{4}$
041108
D
041109
C
041110
A
041111
B
041112
$\dfrac{2}{5}\sqrt{10}$
041113
A
030201
B
041114
A
041115
$(\sqrt{3},2)$
041116
$\dfrac{\sqrt{2}}{2}$
041117
(1)$arccos\dfrac{2}{5}\\$(2)正弦值为$\dfrac{\sqrt{15}}{5}\\(3)\dfrac{\pi}{6}$
041118
$l:y-2=\dfrac{118}{143}(x-3)$
041119
$x^2+y^2+x-6y+3=0$
041120
曲线方程为$y^2=48-12x\quad(x\geq3)$及$y^2=4x\quad(x<3)$
041121
$x^2+y^2=7$
ans
012345
D
023233
$a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2
\end{cases}$.
023255
(1)略;(2)$a_n=\begin{cases}
\frac{1}{2},n=1\\-\frac{1}{2n(n-1)},n\geq2
\end{cases}$