539 lines
6.9 KiB
Plaintext
539 lines
6.9 KiB
Plaintext
ans
|
||
|
||
021268
|
||
\begin{center}
|
||
\begin{tabular}{|c|c|c|c|c|c|}
|
||
\hline 标准方程 & 图形 & 顶点 & 对称轴 & 焦点 & 准线 \\
|
||
\hline $y^2=2 p x$($p>0$) & \begin{tikzpicture}[>=latex,scale = 0.5]
|
||
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
|
||
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
|
||
\draw (0,0) node [below right] {$O$};
|
||
\draw (-0.5,-2) -- (-0.5,2);
|
||
\draw [domain = -2:2] plot ({\x*\x/2},\x);
|
||
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(\frac{p}{2},0)$ & $x=-\frac{p}{2}$ \\
|
||
\hline $y^2=-2 p x$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
|
||
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
|
||
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
|
||
\draw (0,0) node [below right] {$O$};
|
||
\draw (0.5,-2) -- (0.5,2);
|
||
\draw [domain = -2:2] plot ({-\x*\x/2},\x);
|
||
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(-\frac{p}{2},0)$ & $x=\frac{p}{2}$ \\
|
||
\hline $x^2=2 p y$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
|
||
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
|
||
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
|
||
\draw (0,0) node [below right] {$O$};
|
||
\draw (-2,-0.5) -- (2,-0.5);
|
||
\draw [domain = -2:2] plot (\x,{\x*\x/2});
|
||
\end{tikzpicture}& $(0,0)$ & $y$轴 & $(0,\frac{p}{2})$ & $y=-\frac{p}{2}$ \\
|
||
\hline $x^2=-2 p y$($p>0$)&\begin{tikzpicture}[>=latex,scale = 0.5]
|
||
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
|
||
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
|
||
\draw (0,0) node [below right] {$O$};
|
||
\draw (-2,0.5) -- (2,0.5);
|
||
\draw [domain = -2:2] plot (\x,-{\x*\x/2});
|
||
\end{tikzpicture} & $(0,0)$ & $y$轴 & $(0,-\frac{p}{2})$ & $y=\frac{p}{2}$ \\
|
||
\hline
|
||
\end{tabular}
|
||
\end{center}
|
||
|
||
021270
|
||
$(0,-8)$; $y=8$
|
||
|
||
021271
|
||
$(0,\frac{1}{16})$; $y=-\frac{1}{16}$
|
||
|
||
021272
|
||
$(0,-\frac{1}{6})$; $y=\frac{1}{6}$
|
||
|
||
041007
|
||
(1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$; (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$;
|
||
(4) $y^2=16x$或$y^2=-16x$;
|
||
(5) $y^2=16x$或$x^2=-12y$.
|
||
|
||
021276
|
||
$\frac{5}{2}$
|
||
|
||
021279
|
||
$(3,\pm 2\sqrt{3})$
|
||
|
||
021284
|
||
$(3,\pm 2\sqrt{6})$
|
||
|
||
021269
|
||
A
|
||
|
||
021275
|
||
$(\frac{m}{4},0)$;$x=-\frac{m}{4}$
|
||
|
||
041008
|
||
$(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$
|
||
|
||
041009
|
||
$y^2=12x$
|
||
|
||
041010
|
||
2
|
||
|
||
041011
|
||
$y^2=-8x$;$m=\pm 2\sqrt{6}$
|
||
|
||
008929
|
||
$x^2=-y,x\in [-1,1]$
|
||
|
||
041012
|
||
(1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$
|
||
|
||
021278
|
||
$(1,\pm 2)$
|
||
|
||
041013
|
||
最小值为$4$, $M(\frac{1}{4},1)$
|
||
|
||
041014
|
||
$x^2=-12y$
|
||
|
||
021280
|
||
$y^2=x$
|
||
|
||
041015
|
||
$y^2=8x$
|
||
|
||
021304
|
||
$\frac{\pi}{2}$
|
||
|
||
021308
|
||
$\frac{11}{2}$
|
||
|
||
021287
|
||
$\frac{45}{8}$
|
||
|
||
009840
|
||
$(\frac{1}{4},0)$;$x=-\frac{1}{4}$
|
||
|
||
021309
|
||
2
|
||
|
||
021290
|
||
$(\frac{1}{2},1)$
|
||
|
||
021291
|
||
$y^2=2x$或$y^2=6x$
|
||
|
||
041016
|
||
相切
|
||
|
||
021339
|
||
$x^2-x+y^2=0(x\neq 0)$
|
||
|
||
021289
|
||
$4\sqrt{3}$
|
||
|
||
021293
|
||
3
|
||
|
||
021294
|
||
$(4,2)$
|
||
|
||
021295
|
||
$-4$
|
||
|
||
021305
|
||
$y^2=\pm 4x$
|
||
|
||
013106
|
||
$[-1,1]$
|
||
|
||
021292
|
||
B
|
||
|
||
008930
|
||
$0$或$-\frac{1}{2}$
|
||
|
||
008934
|
||
$4x-y-15=0$
|
||
|
||
008922
|
||
$y=\frac{1}{4},x>\frac{1}{16}$
|
||
|
||
021299
|
||
2
|
||
|
||
021300
|
||
$2\sqrt{15}$
|
||
|
||
021321
|
||
(1) 定点$(2,0)$;(2) 4
|
||
|
||
041017
|
||
(1) 6; (2) $\frac{1}{32}$
|
||
|
||
041018
|
||
8
|
||
|
||
021316
|
||
$\frac{11}{4}$
|
||
|
||
021326
|
||
8
|
||
|
||
021319
|
||
$y=\pm \frac{\sqrt{3}}{3}x+1$
|
||
|
||
041019
|
||
$\frac{2}{p}$
|
||
|
||
041020
|
||
D
|
||
|
||
041021
|
||
(1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$
|
||
|
||
021331
|
||
D
|
||
|
||
041022
|
||
C
|
||
|
||
041023
|
||
必要不充分
|
||
|
||
021334
|
||
$y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$
|
||
|
||
021335
|
||
$y=-2x^2+8x-4$
|
||
|
||
021336
|
||
$y^2=8x-16$
|
||
|
||
021337
|
||
$x^2+y^2=1$
|
||
|
||
021338
|
||
$3x+y-4=0(x \neq 1)$
|
||
|
||
021340
|
||
$(x-1)^2+(y-2)^2=\frac{1}{9}$
|
||
|
||
021341
|
||
$x+2y-5=0$
|
||
|
||
021342
|
||
$x^2+y^2=4(x>0,y>0)$
|
||
|
||
021343
|
||
$(x-3)^2=10y-15$
|
||
|
||
041024
|
||
C
|
||
|
||
008846
|
||
0或$-\frac{1}{2}$
|
||
|
||
008847
|
||
$\frac{3}{2}$
|
||
|
||
008852
|
||
0或$\frac{1}{4}$或$-\frac{1}{2}$
|
||
|
||
008853
|
||
$[-4,4]]$
|
||
|
||
041025
|
||
(2) $13x-2y=0$
|
||
|
||
041026
|
||
$(-3,5),(1,1)$
|
||
|
||
041027
|
||
$k<-2$或$k>2$或$k=\pm \sqrt{3}$
|
||
|
||
010704
|
||
$(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$
|
||
|
||
010703
|
||
当$0<k<1$时,轨迹为椭圆;当$k>1$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线
|
||
|
||
021348
|
||
$x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$
|
||
|
||
021349
|
||
0
|
||
|
||
021351
|
||
$\frac{\pi}{3}$或$\frac{2\pi}{3}$
|
||
|
||
041028
|
||
$(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$
|
||
|
||
021352
|
||
4
|
||
|
||
021353
|
||
D
|
||
|
||
041029
|
||
$x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
|
||
|
||
021354
|
||
(1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$
|
||
|
||
021355
|
||
$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线
|
||
|
||
009845
|
||
$x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
|
||
|
||
009846
|
||
$x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$
|
||
|
||
021358
|
||
6
|
||
|
||
021359
|
||
$\sqrt{17}$
|
||
|
||
021362
|
||
$(3\sqrt{2},\sqrt{2})$
|
||
|
||
021363
|
||
最大值7; 最小值$\frac{3\sqrt{15}-4}{4}$
|
||
|
||
021364
|
||
$\sqrt{33}+2\sqrt{6}$
|
||
|
||
012470
|
||
B
|
||
|
||
041030
|
||
B
|
||
|
||
041031
|
||
A
|
||
|
||
041032
|
||
$(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$
|
||
|
||
041033
|
||
13
|
||
|
||
041034
|
||
$\frac{1+2\sqrt{21}}{3}$
|
||
|
||
041035
|
||
$y=\pm 1$
|
||
|
||
041036
|
||
$y^2=2x-2$
|
||
|
||
041037
|
||
$7\sqrt{3}$
|
||
|
||
041038
|
||
(1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆
|
||
$\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$
|
||
|
||
041039
|
||
(1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$;
|
||
(2) 点 $T$ 不在曲线 $\Gamma$ 上
|
||
|
||
ans
|
||
|
||
041073
|
||
(-2,$\dfrac{1}{2}$)
|
||
|
||
041074
|
||
$x-8y=0(x<-\dfrac{8}{15}\sqrt{15}$或$x>\dfrac{8}{15}\sqrt{15}$)
|
||
|
||
041075
|
||
$(-\infty,-1)\cup(1,+\infty)$
|
||
|
||
041076
|
||
$[3+2\sqrt{3},+\infty)$
|
||
|
||
041077
|
||
$2\sqrt{10}$
|
||
|
||
041078
|
||
44
|
||
|
||
002112
|
||
$y^2=4x$
|
||
|
||
002409
|
||
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
|
||
|
||
041079
|
||
$\pm 2\sqrt{6}$
|
||
|
||
041080
|
||
(5,0)
|
||
|
||
041081
|
||
$\dfrac{23}{24}$
|
||
|
||
041082
|
||
176.0
|
||
|
||
041083
|
||
$|PA|_{\min}=\begin{cases}
|
||
a,0<a\leq1\\
|
||
\sqrt{2a-1},a>1
|
||
\end{cases}$
|
||
|
||
041084
|
||
不存在
|
||
|
||
041085
|
||
(1)$m_A=91.5,m_B=90\\(2)S^2_A<S^2_B,A$稳定\\(3)$\dfrac{4}{5}$
|
||
|
||
041086
|
||
(1)$1<a<\sqrt{10}\\(2)l:x=3$或$x=\pm \dfrac{5}{7}\sqrt{7}+3$
|
||
|
||
041087
|
||
(1)$d=2$\\(2)$P$不存在\\(3)$l:x=\pm \sqrt{2}y+2$
|
||
|
||
002112
|
||
$y^2=4x$
|
||
|
||
002409
|
||
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
|
||
|
||
041079
|
||
$\pm 2\sqrt{6}$
|
||
|
||
041080
|
||
$(5,0)$
|
||
|
||
041088
|
||
$2x\pm \sqrt{3}y-2=0$
|
||
|
||
003441
|
||
$\dfrac{11}{4}$
|
||
|
||
041089
|
||
$2x+y-2=0$
|
||
|
||
041090
|
||
$(2,2)$
|
||
|
||
041091
|
||
1$\quad(\dfrac{1}{9},\dfrac{2}{3})$
|
||
|
||
041092
|
||
$48$
|
||
|
||
041093
|
||
C
|
||
|
||
041094
|
||
$S_{max}=30$此时$P(8,4)$
|
||
|
||
041095
|
||
(1)$x_B+x_C=11\\y_B+y_C=-4$\\(2)$BC:y=-4x+20$\\(3)$B(\dfrac{11-\sqrt{21}}{2},-2+2\sqrt{21})$\\C($\dfrac{11+\sqrt{21}}{2},-2-2\sqrt{21})$
|
||
|
||
041096
|
||
$(1)C_2:\dfrac{y^2}{4}-\dfrac{x^2}{3}=1\\(2)p>\dfrac{4}{3}\sqrt{3},\quad \overrightarrow{FA}\cdot \overrightarrow{FB}_{max}=9,\quad$此时$p=2\sqrt{3}$\\(3)$p=2\sqrt{3}$
|
||
|
||
041097
|
||
$(-\infty,-2)$
|
||
|
||
041098
|
||
$\dfrac{1}{2}$
|
||
|
||
041099
|
||
(2)(3)(4)
|
||
|
||
018928
|
||
7
|
||
|
||
041100
|
||
AD,CD
|
||
|
||
041101
|
||
(3)(4)
|
||
|
||
041102
|
||
$\pm 2$
|
||
|
||
041103
|
||
$y^2-\dfrac{x^2}{48}=1\quad(y<0)$
|
||
|
||
041104
|
||
4或2或$\dfrac{3}{2}$
|
||
|
||
041105
|
||
(2)
|
||
|
||
023553
|
||
(1)$\dfrac{17}{45}$\\(2)一级6箱,二级2箱\\(3)预估287.69克
|
||
|
||
041106
|
||
$[\dfrac{1}{3},1)\cup(1,3]$
|
||
|
||
018949
|
||
没有被抓的风险
|
||
|
||
041107
|
||
(1)$\dfrac{x^2}{24}+\dfrac{y^2}{20}=1\\S_{max}=\dfrac{5\sqrt{30}}{4}$
|
||
|
||
041108
|
||
D
|
||
|
||
041109
|
||
C
|
||
|
||
041110
|
||
A
|
||
|
||
041111
|
||
B
|
||
|
||
041112
|
||
$\dfrac{2}{5}\sqrt{10}$
|
||
|
||
041113
|
||
A
|
||
|
||
030201
|
||
B
|
||
|
||
041114
|
||
A
|
||
|
||
041115
|
||
$(\sqrt{3},2)$
|
||
|
||
041116
|
||
$\dfrac{\sqrt{2}}{2}$
|
||
|
||
041117
|
||
(1)$arccos\dfrac{2}{5}\\$(2)正弦值为$\dfrac{\sqrt{15}}{5}\\(3)\dfrac{\pi}{6}$
|
||
|
||
041118
|
||
$l:y-2=\dfrac{118}{143}(x-3)$
|
||
|
||
041119
|
||
$x^2+y^2+x-6y+3=0$
|
||
|
||
041120
|
||
曲线方程为$y^2=48-12x\quad(x\geq3)$及$y^2=4x\quad(x<3)$
|
||
|
||
041121
|
||
$x^2+y^2=7$
|
||
|
||
|
||
ans
|
||
|
||
012345
|
||
D
|
||
|
||
023233
|
||
$a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2
|
||
\end{cases}$.
|
||
|
||
023255
|
||
(1)略;(2)$a_n=\begin{cases}
|
||
\frac{1}{2},n=1\\-\frac{1}{2n(n-1)},n\geq2
|
||
\end{cases}$
|