1850 lines
14 KiB
Plaintext
1850 lines
14 KiB
Plaintext
ans
|
|
|
|
032149
|
|
$32$
|
|
|
|
032159
|
|
${2}$
|
|
|
|
032160
|
|
$(-\infty,-1)\cup (1,+\infty)$
|
|
|
|
032161
|
|
$48.5$
|
|
|
|
032162
|
|
$4-3\mathrm{i}$
|
|
|
|
032163
|
|
$\frac{13}{4}$
|
|
|
|
032164
|
|
$35$
|
|
|
|
032165
|
|
$\dfrac{24}{7}$
|
|
|
|
032166
|
|
$12$
|
|
|
|
032167
|
|
$(-1,1)$
|
|
|
|
032168
|
|
$\dfrac{3}{5}$
|
|
|
|
032169
|
|
$[\sqrt{2},+\infty)$
|
|
|
|
032170
|
|
$-5$
|
|
|
|
032171
|
|
D
|
|
|
|
032172
|
|
B
|
|
|
|
032173
|
|
C
|
|
|
|
032174
|
|
B
|
|
|
|
032175
|
|
$(1)\dfrac{2\sqrt{2}\pi}{3};\quad(2)\mathrm{arctan}\dfrac{\sqrt{13}}{13}$
|
|
|
|
032176
|
|
$(1)\dfrac{\pi}{6};\quad(2)\sqrt{7}$
|
|
|
|
032177
|
|
$(1)\chi^2 \approx 35.428; \quad (2)\dfrac{705}{833}$
|
|
|
|
032178
|
|
$(1)|PF|=\dfrac{15}{14}; \quad (2) k_{PM}=-\dfrac{\sqrt{5}}{2}; \quad (3)(\dfrac{11}{7},\dfrac{15}{14})$
|
|
|
|
032179
|
|
(1)具有性质$P$,理由略; $\quad$ (2)$(-\infty,0); \quad$ (3)具有性质$P$,所有公差的取值集合为$\{1,2\}$
|
|
|
|
032184
|
|
$\dfrac{2}{3}$
|
|
|
|
032185
|
|
$(-\dfrac{6}{5},-\dfrac{3}{5})$
|
|
|
|
032186
|
|
$\{0,\dfrac{\sqrt{3}}{2},-\dfrac{\sqrt{3}}{2}\}$
|
|
|
|
032187
|
|
C
|
|
|
|
032188
|
|
A
|
|
|
|
030993
|
|
A
|
|
|
|
032189
|
|
B
|
|
|
|
032190
|
|
(1)证明略; $\quad$ (2)正切值为$\dfrac{\sqrt{5}}{5}$
|
|
|
|
032191
|
|
(1)$2\sqrt{6}$; $\quad$ (2)$(\dfrac{1}{2},\dfrac{\sqrt{2}}{2})$
|
|
|
|
032192
|
|
(1)$300$; $\quad$ (2)$0.8186$; $\quad$ (3)$Y \sim \begin{pmatrix} 0 & 1 & 2 & 3 \\ \dfrac{1}{20} & \dfrac{9}{20} & \dfrac{9}{20} & \dfrac{1}{20} \end{pmatrix},E[Y]=\dfrac{3}{2}$
|
|
|
|
032193
|
|
(1)$\dfrac{\sqrt{6}}{3}$; $\quad$ (2)$\dfrac{4}{3}$或$\dfrac{4\sqrt{6}}{9}$ $\quad$(3)$P(1,1)$
|
|
|
|
032194
|
|
(1)$a=1$; $\quad$ (2)存在; $\quad$ (3)不存在
|
|
|
|
032200
|
|
$-1$
|
|
|
|
032201
|
|
$\{0,1,2\}$
|
|
|
|
032202
|
|
$-1$
|
|
|
|
032203
|
|
$24$
|
|
|
|
032204
|
|
$10$
|
|
|
|
032205
|
|
$1-\mathrm{e}$
|
|
|
|
032206
|
|
$\pm \dfrac{5}{2}$
|
|
|
|
032207
|
|
$\dfrac{6}{7}$
|
|
|
|
032208
|
|
$\dfrac{\sqrt{5}}{3}$
|
|
|
|
032209
|
|
$(-3,-\dfrac{1}{3}$
|
|
|
|
032210
|
|
$195$
|
|
|
|
032211
|
|
D
|
|
|
|
032212
|
|
C
|
|
|
|
032213
|
|
C
|
|
|
|
032214
|
|
A
|
|
|
|
032215
|
|
(1)证明略; $\quad$ (2)$\dfrac{2\sqrt{5}}{5}$
|
|
|
|
004285
|
|
(1)$f_{\mathrm{max}}(x)=3, T=\pi$; $\quad$ (2)$\dfrac{\sqrt{3}}{4}$
|
|
|
|
032216
|
|
(1)$\sqrt{3}$; $\quad$ (2)证明略; $\quad$ (3)$m=\sqrt{14}$时$P(-\dfrac{6\sqrt{14}}{7},0)$,$\quad$ $m=-\sqrt{14}$时$P(\dfrac{6\sqrt{14}}{7},0)$
|
|
|
|
032217
|
|
(1)$m \geq 1$; $\quad$ (2)存在, 如$a_n=n\pi$(满足$\sin{a_n}=0$或者$\cos{d}=1$的数列$\{a_n\}$, 只要不是常数列, 都可以, 其余数列不行); $\quad$ (3)$(k,b)=(-1,1)$或$(\dfrac{1}{2},\dfrac{2\pi}{3}-\dfrac{\sqrt{3}}{2})$
|
|
|
|
030000
|
|
(1)$y=\pm2\sqrt{2}x$;(2)最大值为$\dfrac{1}{4}$,$\tan{\angle AF_1B}=-\dfrac{24}{7}$
|
|
|
|
032437
|
|
$2$
|
|
|
|
014707
|
|
$3$
|
|
|
|
030772
|
|
$\pi$
|
|
|
|
032438
|
|
$15$
|
|
|
|
032439
|
|
$10$
|
|
|
|
032440
|
|
$9$
|
|
|
|
032441
|
|
$\dfrac{2}{3}$
|
|
|
|
032442
|
|
$\dfrac{3}{2}$
|
|
|
|
032443
|
|
$\dfrac{1}{3}$
|
|
|
|
032444
|
|
$\dfrac{\sqrt{5}}{2}$
|
|
|
|
032445
|
|
$(-\infty,-2] \cup [-\dfrac{1}{2},+\infty)$
|
|
|
|
032446
|
|
{50,55}
|
|
|
|
032447
|
|
D
|
|
|
|
031003
|
|
D
|
|
|
|
032448
|
|
A
|
|
|
|
032449
|
|
D
|
|
|
|
032450
|
|
(1)$\dfrac{\pi}{3}$; $\quad$ (2)$3+\sqrt{3}$
|
|
|
|
032451
|
|
(1)$\arccos{\dfrac{\sqrt{5}}{10}}$(即$\arctan{\sqrt{19}}$或$\arcsin{\dfrac{19\sqrt{5}}{10}}$); $\quad$ (2) $\dfrac{6}{5}$
|
|
|
|
032452
|
|
(1)$\chi^2 \approx 3.414$,这两类人群的性别没有显著差异; $\quad$ (2)$9$人
|
|
|
|
032453
|
|
(1)$(-1,-\dfrac{8}{3})$; $\quad$ (2) $y=\dfrac{4}{3}x+\dfrac{2}{3}$或$y=\dfrac{2}{3}x+\dfrac{4}{3}$; $\quad$ (3)$|PR|=\dfrac{4(s+1)\sqrt{s+1}}{s}$, $|PR|_\mathrm{min}=6\sqrt{3}$
|
|
|
|
032454
|
|
(1)$-3,-2,-1,0,1$; $\quad$ (2)证明略; $\quad$ (3)$f(x_0) < 0, a\in [-\dfrac{\mathrm{e}}{\mathrm{e}+1},0)$
|
|
|
|
032234
|
|
$(1,4)$
|
|
|
|
032235
|
|
$x=-2$
|
|
|
|
032236
|
|
$\dfrac{1-\mathrm{i}}{2}$
|
|
|
|
032237
|
|
$\dfrac{7}{9}$
|
|
|
|
032238
|
|
$45$
|
|
|
|
032239
|
|
$2^n$
|
|
|
|
032240
|
|
$\dfrac{\pi}{4}$
|
|
|
|
032241
|
|
$(0,1)$
|
|
|
|
032242
|
|
$2$
|
|
|
|
032243
|
|
$60$
|
|
|
|
032244
|
|
$134$
|
|
|
|
032245
|
|
$(\arccos{\dfrac{1}{8}},\pi)$
|
|
|
|
032246
|
|
D
|
|
|
|
032247
|
|
C
|
|
|
|
032248
|
|
B
|
|
|
|
032249
|
|
C
|
|
|
|
032250
|
|
(1)证明略; $\quad$ (2)$2\sqrt{2}$
|
|
|
|
032251
|
|
(1)不是奇函数也不是偶函数; $\quad$ (2)$c=\dfrac{3\sqrt{3} \pm \sqrt{7}}{2}$
|
|
|
|
032252
|
|
(1)$88.5$; $\quad$ (2) $\dfrac{1}{20}$; $\quad$ (3)$\chi^2 \approx 7.62$,有$95\%$的把握认为两种生产方式的工作效率有显著差异
|
|
|
|
032253
|
|
(1)$\dfrac{x^2}{4}+y^2=1$; $\quad$ (2)$G(-\dfrac{4}{3},\dfrac{1}{3}$; $\quad$ (3)$x+2y=0$
|
|
|
|
032254
|
|
(1)证明略; $\quad$ (2)$[-1,+\infty)$; (3)证明略
|
|
|
|
024274
|
|
$(-1,2)$
|
|
|
|
024275
|
|
$2+\mathrm{i}$
|
|
|
|
024276
|
|
$\dfrac{9}{2}$
|
|
|
|
017614
|
|
$-\dfrac{7}{25}$
|
|
|
|
024277
|
|
$\dfrac{7}{2}$
|
|
|
|
024278
|
|
$-\dfrac{1}{2\mathrm{e}}$
|
|
|
|
024279
|
|
$-160$
|
|
|
|
011354
|
|
$\dfrac{16}{51}$
|
|
|
|
024217
|
|
A
|
|
|
|
024280
|
|
D
|
|
|
|
024281
|
|
$(-1,4)$
|
|
|
|
024282
|
|
$\dfrac{\sqrt{2}}{2}$
|
|
|
|
024283
|
|
$\dfrac{\sqrt{15}}{3}$
|
|
|
|
024284
|
|
$\dfrac{2\pi}{3}$
|
|
|
|
019976
|
|
$\sqrt{3}$
|
|
|
|
014717
|
|
$0.3$
|
|
|
|
024285
|
|
$5$
|
|
|
|
024286
|
|
$\dfrac{3}{2}$
|
|
|
|
024287
|
|
C
|
|
|
|
024288
|
|
A
|
|
|
|
004166
|
|
$4$
|
|
|
|
004168
|
|
$2\sin{\dfrac{\pi}{4} x} $
|
|
|
|
023054
|
|
$3\pi$
|
|
|
|
024289
|
|
$\dfrac{2}{\pi}$
|
|
|
|
004170
|
|
$\dfrac{1}{2}$
|
|
|
|
024290
|
|
A
|
|
|
|
004176
|
|
D
|
|
|
|
030621
|
|
$[0,\dfrac{3}{2}]$
|
|
|
|
024291
|
|
$3$
|
|
|
|
030974
|
|
$1$
|
|
|
|
024292
|
|
$0.42$
|
|
|
|
030929
|
|
$2$
|
|
|
|
024293
|
|
$[\mathrm{e}+1,+\infty)$
|
|
|
|
024294
|
|
$18$
|
|
|
|
030641
|
|
$[-1,+\infty)$
|
|
|
|
024295
|
|
A
|
|
|
|
030993
|
|
A
|
|
|
|
030972
|
|
$-1+\mathrm{i}$
|
|
|
|
030624
|
|
$(1,4)$
|
|
|
|
030838
|
|
$45$
|
|
|
|
030743
|
|
$4$
|
|
|
|
030762
|
|
$-\dfrac{7}{25}$
|
|
|
|
024296
|
|
$(2,+\infty)$
|
|
|
|
014713
|
|
$\dfrac{1}{4}$
|
|
|
|
031123
|
|
$y^2=\pm 3x$
|
|
|
|
030990
|
|
A
|
|
|
|
024297
|
|
C
|
|
|
|
004724
|
|
$(0,1)$
|
|
|
|
004726
|
|
$2$
|
|
|
|
004727
|
|
$180$
|
|
|
|
004728
|
|
$12\pi$
|
|
|
|
024298
|
|
$0.4$
|
|
|
|
024299
|
|
$m \geq -3$
|
|
|
|
024300
|
|
$-11$
|
|
|
|
004736
|
|
A
|
|
|
|
004737
|
|
B
|
|
|
|
024301
|
|
$\{1\}$
|
|
|
|
024302
|
|
$-2$
|
|
|
|
024303
|
|
$1$
|
|
|
|
024304
|
|
$1$
|
|
|
|
024305
|
|
$0$
|
|
|
|
017611
|
|
$\dfrac{1}{2}$
|
|
|
|
023955
|
|
$12\pi$
|
|
|
|
024306
|
|
$\hat{y}=3x-3$
|
|
|
|
024307
|
|
D
|
|
|
|
024308
|
|
B
|
|
|
|
024309
|
|
$[-1,3)$
|
|
|
|
024185
|
|
$\dfrac{1}{3}$
|
|
|
|
024310
|
|
$9$
|
|
|
|
012457
|
|
$2\sqrt{3}$
|
|
|
|
024214
|
|
$\dfrac{16}{9}$
|
|
|
|
031718
|
|
$-\dfrac{21}{2}$
|
|
|
|
024176
|
|
$\dfrac{1}{169}$
|
|
|
|
031139
|
|
C
|
|
|
|
024311
|
|
D
|
|
|
|
030964
|
|
$\sqrt{10}$
|
|
|
|
030620
|
|
$[1,2)$
|
|
|
|
030758
|
|
$-2$
|
|
|
|
024312
|
|
$\dfrac{1}{\mathrm{e}}$
|
|
|
|
024313
|
|
$\mathrm{e}$
|
|
|
|
031121
|
|
$5$
|
|
|
|
030858
|
|
$8$
|
|
|
|
024314
|
|
$\dfrac{1}{4}$
|
|
|
|
030645
|
|
D
|
|
|
|
031140
|
|
C
|
|
|
|
024315
|
|
$(2,3)$
|
|
|
|
024316
|
|
$y=3x-2$
|
|
|
|
024317
|
|
$22$
|
|
|
|
023957
|
|
$8$
|
|
|
|
024318
|
|
$6.51$
|
|
|
|
024319
|
|
$(0,\dfrac{1}{4}$
|
|
|
|
024320
|
|
$\dfrac{11}{16}$
|
|
|
|
024321
|
|
A
|
|
|
|
024322
|
|
D
|
|
|
|
024323
|
|
$\{1\}$
|
|
|
|
024324
|
|
$1-\mathrm{i}$
|
|
|
|
024325
|
|
$1$
|
|
|
|
024326
|
|
$160$
|
|
|
|
024327
|
|
$2$
|
|
|
|
024328
|
|
$-3$
|
|
|
|
023939
|
|
$\pi : 4$
|
|
|
|
024329
|
|
$\dfrac{2}{9}$
|
|
|
|
024330
|
|
A
|
|
|
|
024331
|
|
B
|
|
|
|
030615
|
|
$\{0,1,2\}$
|
|
|
|
030966
|
|
$\sqrt{5}$
|
|
|
|
030760
|
|
$\dfrac{1}{2}$
|
|
|
|
024332
|
|
$\dfrac{1}{x-1}$
|
|
|
|
024333
|
|
$5$
|
|
|
|
024334
|
|
$\dfrac{2}{5}$
|
|
|
|
031000
|
|
$\arccos{\dfrac{\sqrt{10}}{10}}$
|
|
|
|
024335
|
|
$\dfrac{8}{3}$
|
|
|
|
030674
|
|
B
|
|
|
|
030637
|
|
$(-2,1)$
|
|
|
|
030839
|
|
$8$
|
|
|
|
024336
|
|
$(-\infty,-1],[1,+\infty)$
|
|
|
|
024337
|
|
$60$
|
|
|
|
024338
|
|
$\dfrac{1}{3}$
|
|
|
|
030888
|
|
$1$
|
|
|
|
024339
|
|
$\dfrac{11}{126}$
|
|
|
|
030979
|
|
B
|
|
|
|
030652
|
|
A
|
|
|
|
024340
|
|
$4$
|
|
|
|
024341
|
|
$0.6$
|
|
|
|
024342
|
|
$(0,1]$
|
|
|
|
024343
|
|
$0$
|
|
|
|
024344
|
|
$1$
|
|
|
|
024345
|
|
$\dfrac{\pi}{3}$
|
|
|
|
024346
|
|
$\sqrt{41}$
|
|
|
|
024347
|
|
$\dfrac{20}{21}$
|
|
|
|
024348
|
|
B
|
|
|
|
004177
|
|
B
|
|
|
|
030597
|
|
$0$
|
|
|
|
030973
|
|
$1$
|
|
|
|
030850
|
|
$3$
|
|
|
|
024349
|
|
$-32$
|
|
|
|
030999
|
|
$\sqrt{2}$
|
|
|
|
024350
|
|
$1$
|
|
|
|
024351
|
|
$\dfrac{3}{5}$
|
|
|
|
030775
|
|
$[-\dfrac{\pi}{3},\dfrac{\pi}{6}]$
|
|
|
|
031106
|
|
C
|
|
|
|
030991
|
|
B
|
|
|
|
030618
|
|
$[0,2]$
|
|
|
|
024352
|
|
$y=x+2$
|
|
|
|
024353
|
|
$[-1,1]$
|
|
|
|
031095
|
|
$3$
|
|
|
|
024354
|
|
$-3$或$\dfrac{10}{3}$
|
|
|
|
031069
|
|
$\sqrt{2}$
|
|
|
|
024355
|
|
$\dfrac{1}{9}$
|
|
|
|
024356
|
|
$0.49$
|
|
|
|
024357
|
|
C
|
|
|
|
030944
|
|
A
|
|
|
|
024358
|
|
$\{-1,0,1\}$
|
|
|
|
024359
|
|
$\sqrt{2}$
|
|
|
|
011243
|
|
$-2$
|
|
|
|
024360
|
|
$-\dfrac{2}{3}$
|
|
|
|
024361
|
|
$20$
|
|
|
|
024362
|
|
$\dfrac{4}{3}$
|
|
|
|
011248
|
|
$\{3,\dfrac{\sqrt{3}}{9} \}$
|
|
|
|
011249
|
|
$140$
|
|
|
|
011254
|
|
B
|
|
|
|
024363
|
|
C
|
|
|
|
030605
|
|
$\{3,5\}$
|
|
|
|
030965
|
|
$\sqrt{5}$
|
|
|
|
024364
|
|
$1$
|
|
|
|
024365
|
|
$36$
|
|
|
|
024366
|
|
$\dfrac{45\pi}{2}$
|
|
|
|
024367
|
|
$\dfrac{2}{3}$
|
|
|
|
011628
|
|
$-160$
|
|
|
|
024368
|
|
$0.98$
|
|
|
|
030644
|
|
A
|
|
|
|
024369
|
|
B
|
|
|
|
024370
|
|
$(2,3)$
|
|
|
|
024371
|
|
$-1-\sqrt{3}\mathrm{i}$
|
|
|
|
024372
|
|
$3$
|
|
|
|
024373
|
|
$8$
|
|
|
|
024374
|
|
$\dfrac{5}{12}$
|
|
|
|
024375
|
|
$-\mathrm{e}^{-x}$
|
|
|
|
024376
|
|
$3$
|
|
|
|
024377
|
|
$\dfrac{\sqrt{5}-1}{2}$
|
|
|
|
024378
|
|
B
|
|
|
|
024379
|
|
D
|
|
|
|
024380
|
|
$(-3,1)$
|
|
|
|
024381
|
|
$\sqrt{2}$
|
|
|
|
024382
|
|
$0$
|
|
|
|
024383
|
|
$4$
|
|
|
|
031020
|
|
$16$
|
|
|
|
024384
|
|
$-14$
|
|
|
|
024385
|
|
$-\dfrac{1}{2}$
|
|
|
|
024386
|
|
C
|
|
|
|
024387
|
|
D
|
|
|
|
024388
|
|
$\{0,1\}$
|
|
|
|
024389
|
|
$6$
|
|
|
|
030757
|
|
$\dfrac{4}{5}$
|
|
|
|
004230
|
|
$\sqrt{3}$
|
|
|
|
024390
|
|
$-18$
|
|
|
|
024391
|
|
$\dfrac{\pi}{4}$
|
|
|
|
024392
|
|
$\dfrac{2\pi}{3}$
|
|
|
|
024393
|
|
$7$
|
|
|
|
024394
|
|
B
|
|
|
|
024395
|
|
A
|
|
|
|
030599
|
|
$\{1\}$
|
|
|
|
024396
|
|
$2\sqrt{3}$
|
|
|
|
024397
|
|
$\pm \dfrac{1}{2}$
|
|
|
|
024398
|
|
$[-\sqrt{5},\sqrt{5}]$
|
|
|
|
024399
|
|
$\dfrac{4}{7}$
|
|
|
|
024400
|
|
$y=2x$
|
|
|
|
024401
|
|
$-2$
|
|
|
|
030933
|
|
$[-1,5]$
|
|
|
|
024402
|
|
B
|
|
|
|
031003
|
|
D
|
|
|
|
024403
|
|
$(-\infty,1)\cup(3,+\infty)$
|
|
|
|
024404
|
|
$-\dfrac{1}{4}$
|
|
|
|
024405
|
|
$5$
|
|
|
|
024406
|
|
$36\pi$
|
|
|
|
024407
|
|
$\dfrac{1}{2}$
|
|
|
|
024408
|
|
$\dfrac{10}{9}$
|
|
|
|
024409
|
|
$219$
|
|
|
|
031072
|
|
$\sqrt{6}$
|
|
|
|
024410
|
|
B
|
|
|
|
024411
|
|
C
|
|
|
|
024412
|
|
$\{-2,-1,0\}$
|
|
|
|
030659
|
|
$[6,+\infty)$
|
|
|
|
024413
|
|
$64$
|
|
|
|
024414
|
|
$\dfrac{2}{3}$
|
|
|
|
011267
|
|
$4$
|
|
|
|
024415
|
|
$0.3$
|
|
|
|
024416
|
|
$\sqrt{3}$
|
|
|
|
024417
|
|
A
|
|
|
|
017631
|
|
A
|
|
|
|
032279
|
|
$\{-1,1\}$
|
|
|
|
032280
|
|
$-7$
|
|
|
|
032281
|
|
$(2,12]$
|
|
|
|
032282
|
|
$-\dfrac{1}{2}+\dfrac{3}{2}\mathrm{i}$
|
|
|
|
032283
|
|
$7$
|
|
|
|
032284
|
|
$3$
|
|
|
|
032285
|
|
$1$
|
|
|
|
032286
|
|
$\dfrac{2}{3}$
|
|
|
|
032287
|
|
A
|
|
|
|
032288
|
|
B
|
|
|
|
032289
|
|
$[0,+\infty)$
|
|
|
|
032290
|
|
$24\pi$
|
|
|
|
032291
|
|
$6$
|
|
|
|
032292
|
|
$1$
|
|
|
|
032293
|
|
$\{x|x\leq 1$或$x>2\}$
|
|
|
|
032294
|
|
$y=x-1$
|
|
|
|
032295
|
|
$2$
|
|
|
|
032296
|
|
$\dfrac{8}{15}$
|
|
|
|
032297
|
|
C
|
|
|
|
032298
|
|
A
|
|
|
|
032299
|
|
$(0,\dfrac{1}{10})\cup (\dfrac{1}{10},+\infty)$
|
|
|
|
032300
|
|
$(-\infty,0)$
|
|
|
|
032301
|
|
$9$
|
|
|
|
032302
|
|
$\dfrac{1}{3}$
|
|
|
|
032303
|
|
$0.94$
|
|
|
|
032304
|
|
$33$
|
|
|
|
032305
|
|
$(\dfrac{3}{13},\dfrac{4}{13},-\dfrac{12}{13})$或$(-\dfrac{3}{13},-\dfrac{4}{13},\dfrac{12}{13})$
|
|
|
|
032306
|
|
$12$
|
|
|
|
032307
|
|
A
|
|
|
|
032308
|
|
A
|
|
|
|
032309
|
|
$(-1,2)$
|
|
|
|
030985
|
|
$1+\mathrm{i}$
|
|
|
|
032310
|
|
$-\dfrac{7}{25}$
|
|
|
|
031484
|
|
$\dfrac{54}{125}$
|
|
|
|
032311
|
|
$-10$
|
|
|
|
009963
|
|
$\dfrac{1}{3}$
|
|
|
|
032312
|
|
$(1,\sqrt{5}]$
|
|
|
|
009976
|
|
D
|
|
|
|
032313
|
|
A
|
|
|
|
015424
|
|
${2,3}$
|
|
|
|
032314
|
|
$1$
|
|
|
|
032315
|
|
$\dfrac{3}{2}$
|
|
|
|
032316
|
|
$-\dfrac{2\sqrt{2}}{3}$
|
|
|
|
009969
|
|
$200$
|
|
|
|
032317
|
|
$(\dfrac{1}{3},-\dfrac{\sqrt{2}}{3})$
|
|
|
|
032318
|
|
$(-\infty,1)$
|
|
|
|
032319
|
|
C
|
|
|
|
032320
|
|
$(0,1]$
|
|
|
|
032321
|
|
$(-\infty,0)\cup [\dfrac{1}{2},+\infty)$
|
|
|
|
032322
|
|
$69$
|
|
|
|
032323
|
|
$3\pi$
|
|
|
|
032324
|
|
$\dfrac{\pi}{4}$
|
|
|
|
004037
|
|
$1.96$
|
|
|
|
016256
|
|
$(\dfrac{\pi}{3},+\infty)$
|
|
|
|
032325
|
|
C
|
|
|
|
032326
|
|
$(0,1)$
|
|
|
|
032327
|
|
$\sqrt{2}$
|
|
|
|
032328
|
|
$\pi$
|
|
|
|
032329
|
|
$2n-8$
|
|
|
|
032330
|
|
$\dfrac{2\sqrt{6}}{3}\pi$
|
|
|
|
032331
|
|
$\dfrac{1}{2}$
|
|
|
|
032332
|
|
$1400$
|
|
|
|
032333
|
|
A
|
|
|
|
032334
|
|
$2$
|
|
|
|
032335
|
|
$1$
|
|
|
|
032336
|
|
$84$
|
|
|
|
032337
|
|
$(\dfrac{8}{5},-\dfrac{4}{5})$
|
|
|
|
032338
|
|
$\dfrac{24}{5}$
|
|
|
|
032339
|
|
$2\sqrt{3}$
|
|
|
|
032340
|
|
$\dfrac{1}{2}$
|
|
|
|
032341
|
|
$4$
|
|
|
|
032342
|
|
C
|
|
|
|
032343
|
|
D
|
|
|
|
032344
|
|
$\{-1,0,1\}$
|
|
|
|
032345
|
|
$\{1,3,4,5\}$
|
|
|
|
032346
|
|
$4$
|
|
|
|
032347
|
|
D
|
|
|
|
032348
|
|
$\{2,3\}$
|
|
|
|
032349
|
|
$3$
|
|
|
|
004315
|
|
$-6$
|
|
|
|
032350
|
|
$10$
|
|
|
|
032351
|
|
$[-1,1]$
|
|
|
|
032352
|
|
$\dfrac{\pi}{3}$或$\dfrac{2\pi}{3}$
|
|
|
|
032353
|
|
$72$
|
|
|
|
032354
|
|
$(-\dfrac{165}{169},\dfrac{396}{169})$
|
|
|
|
032355
|
|
C
|
|
|
|
032356
|
|
B
|
|
|
|
032357
|
|
$1$
|
|
|
|
032358
|
|
$(-1,0)\cup(0,1)$
|
|
|
|
032359
|
|
$4x+y-4=0$
|
|
|
|
032360
|
|
$0.24$
|
|
|
|
032361
|
|
$-2$
|
|
|
|
032362
|
|
$\sqrt{2}$
|
|
|
|
032363
|
|
$2$
|
|
|
|
032364
|
|
$14$
|
|
|
|
032365
|
|
A
|
|
|
|
032366
|
|
B
|
|
|
|
032367
|
|
$\{\sqrt{2}\mathrm{i}$,$-\sqrt{2}\mathrm{i}$
|
|
|
|
032368
|
|
$0.2$
|
|
|
|
032369
|
|
$1$或$3$
|
|
|
|
032370
|
|
$2\pi$
|
|
|
|
032371
|
|
$-1$
|
|
|
|
032372
|
|
$\sqrt{5}$
|
|
|
|
032373
|
|
$\dfrac{1}{4}$
|
|
|
|
032374
|
|
$0$
|
|
|
|
032375
|
|
B
|
|
|
|
032376
|
|
A
|
|
|
|
023072
|
|
$[1,2)$
|
|
|
|
032377
|
|
$(-1,0)$
|
|
|
|
032378
|
|
$-\sqrt{3}$
|
|
|
|
032379
|
|
$\sqrt{2}$
|
|
|
|
015600
|
|
$2\sqrt2$
|
|
|
|
032380
|
|
$y=-x+2$
|
|
|
|
032381
|
|
$\dfrac34$
|
|
|
|
032382
|
|
D
|
|
|
|
032383
|
|
A
|
|
|
|
002713
|
|
$2$
|
|
|
|
032384
|
|
$2$
|
|
|
|
032385
|
|
$4$
|
|
|
|
032386
|
|
$24\pi$
|
|
|
|
032387
|
|
$20$
|
|
|
|
032388
|
|
$0.2$
|
|
|
|
032389
|
|
B
|
|
|
|
032390
|
|
A
|
|
|
|
032391
|
|
$\dfrac15-\dfrac25\mathrm{i}$
|
|
|
|
032392
|
|
$(-2,2)$
|
|
|
|
032393
|
|
$-\dfrac12$
|
|
|
|
032394
|
|
$15$
|
|
|
|
032395
|
|
$\dfrac{\sqrt2}{2}$
|
|
|
|
032396
|
|
$\dfrac35$
|
|
|
|
032397
|
|
$3$
|
|
|
|
032398
|
|
c
|
|
|
|
032399
|
|
c
|
|
|
|
011475
|
|
$(-\infty,0)$
|
|
|
|
032400
|
|
$(1,-2)$
|
|
|
|
032401
|
|
$\dfrac{\pi}{2}$
|
|
|
|
032402
|
|
$m^2+1$
|
|
|
|
032403
|
|
$(-\infty,1)\cup (1,+\infty)$
|
|
|
|
032404
|
|
$\dfrac{11}{12}$
|
|
|
|
032405
|
|
$4$
|
|
|
|
032406
|
|
B
|
|
|
|
032407
|
|
$-\dfrac23$
|
|
|
|
032408
|
|
$\sqrt2$
|
|
|
|
032409
|
|
$2$
|
|
|
|
032410
|
|
$120^{\circ}$
|
|
|
|
032411
|
|
$13$
|
|
|
|
032412
|
|
$36\sqrt2$
|
|
|
|
032413
|
|
$-1$
|
|
|
|
032414
|
|
$50$
|
|
|
|
032415
|
|
A
|
|
|
|
032416
|
|
D
|
|
|
|
032417
|
|
$\{1,2\}$
|
|
|
|
032418
|
|
$1$
|
|
|
|
032419
|
|
$-3$
|
|
|
|
032420
|
|
$\dfrac{\sqrt{3}}{2}$
|
|
|
|
032421
|
|
$15$
|
|
|
|
032422
|
|
$3$
|
|
|
|
032423
|
|
$\dfrac13$
|
|
|
|
032424
|
|
$\dfrac5{28}$
|
|
|
|
032425
|
|
A
|
|
|
|
032426
|
|
C
|
|
|
|
032427
|
|
$\{0,1\}$
|
|
|
|
032428
|
|
$-2$
|
|
|
|
032429
|
|
$0$
|
|
|
|
032430
|
|
$\dfrac{\pi}{4}$
|
|
|
|
032431
|
|
$2$
|
|
|
|
032432
|
|
$-\dfrac13$
|
|
|
|
032433
|
|
$\dfrac32$
|
|
|
|
032434
|
|
$\dfrac5{32}$
|
|
|
|
032435
|
|
C
|
|
|
|
032436
|
|
B
|
|
|
|
032043
|
|
(1)$(0,100)$;(2)$2$
|
|
|
|
032044
|
|
$2\sqrt{2}$
|
|
|
|
032048
|
|
$(-2,1)$
|
|
|
|
032079
|
|
$\in$
|
|
|
|
032080
|
|
(2)(4)
|
|
|
|
032081
|
|
$4$
|
|
|
|
032082
|
|
$\arccos{\dfrac{\sqrt{14}}{14}}$
|
|
|
|
032083
|
|
异面
|
|
|
|
032084
|
|
$4$
|
|
|
|
032085
|
|
$\sqrt{3}$
|
|
|
|
032086
|
|
$\sqrt{3}$
|
|
|
|
032087
|
|
$4\sqrt{3}\pi$
|
|
|
|
032088
|
|
(1)证明略;(2)$\arctan{\sqrt{2}}$;(3)$\arctan{\dfrac{1}{2}}$
|
|
|
|
032062
|
|
$8$
|
|
|
|
032061
|
|
$x^2=2y+2,|x|>2$
|
|
|
|
011693
|
|
$\{1,4\}$
|
|
|
|
011694
|
|
$\dfrac{1}{4}+\dfrac{1}{2}i$
|
|
|
|
032218
|
|
$5$
|
|
|
|
032219
|
|
$35x^3$
|
|
|
|
032220
|
|
$\dfrac{3}{4}\pi$
|
|
|
|
003659
|
|
$-3$
|
|
|
|
032221
|
|
$\dfrac{x^2}{20}-\dfrac{y^2}{5}=1$
|
|
|
|
032222
|
|
$[3,5]$
|
|
|
|
011725
|
|
$(2,+\infty)$
|
|
|
|
032223
|
|
$\dfrac{1}{4}$
|
|
|
|
032224
|
|
$4.16$
|
|
|
|
032225
|
|
C
|
|
|
|
032226
|
|
B
|
|
|
|
032227
|
|
D
|
|
|
|
032228
|
|
C
|
|
|
|
032229
|
|
(1)相交; (2)$arcsin\dfrac{\sqrt{6}}{6}$
|
|
|
|
032230
|
|
(1)$\begin{pmatrix}
|
|
0&1&2&3\\
|
|
\dfrac{1}{6}&\dfrac{1}{2}&\dfrac{3}{10}&\dfrac{1}{30}
|
|
\end{pmatrix}$;
|
|
(2)$\begin{pmatrix}
|
|
0&1&2&3\\
|
|
\dfrac{27}{125}&\dfrac{54}{125}&\dfrac{36}{125}&\dfrac{8}{125}
|
|
\end{pmatrix}$;$E[X]=\dfrac{6}{5};D[X]=\dfrac{18}{25}$
|
|
|
|
032231
|
|
存在BA上的点P和BC上的点Q,其中BP长约7.2米, BQ长约2.8米满足题意
|
|
|
|
032232
|
|
(1)不属于; (2)$[\dfrac{3}{2},6]$;(3)证明略
|
|
|
|
032233
|
|
(1)$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$;(2)$\dfrac{2a}{b^2}$;(3)$\sqrt{2}-1$或$\sqrt{6}-\sqrt{3}$
|
|
|
|
032257
|
|
$(-\infty,-\dfrac{4}{9})$
|
|
|
|
003646
|
|
D
|
|
|
|
032256
|
|
(1)$\sqrt{5}$;(2)$2\pi+8$
|
|
|
|
014990
|
|
(1) 证明略(不要忽视定义域); (2) $[-\dfrac 14,+\infty)$
|
|
|
|
032255
|
|
A
|
|
|
|
030642
|
|
$(0,2))$
|
|
|
|
032099
|
|
$2\pi$
|
|
|
|
032100
|
|
$10$
|
|
|
|
032101
|
|
$y=-\dfrac{4}{3}x$
|
|
|
|
030872
|
|
$\dfrac{n(n+1)}{2}$
|
|
|
|
032102
|
|
$[\dfrac{2-\sqrt{2}}{3},1]$
|
|
|
|
032103
|
|
$3\sqrt{31}-2$
|
|
|
|
030870
|
|
C
|
|
|
|
032104
|
|
(1)$\dfrac{2\sqrt{3}}{9}$;(2)$\arccos\dfrac{\sqrt{3}}{3}$
|
|
|
|
032105
|
|
(1)$2$;(2)$4\pm2\sqrt{2}$
|
|
|
|
032106
|
|
(1)$-1$;(2)$1$;(3)$(-\infty,-1)$
|
|
|
|
032107
|
|
$2$
|
|
|
|
032108
|
|
$\sqrt{2}$
|
|
|
|
032109
|
|
1
|
|
|
|
032110
|
|
21
|
|
|
|
032111
|
|
$4$
|
|
|
|
032112
|
|
$[-\dfrac{\pi}{6},\dfrac{\pi}{6})$
|
|
|
|
032113
|
|
$(0,1)\cup(1,3)$
|
|
|
|
032114
|
|
$2\sqrt{2}\pi$
|
|
|
|
032115
|
|
$6$
|
|
|
|
032116
|
|
$\dfrac{1}{2}$
|
|
|
|
032117
|
|
$4e^{-\dfrac{3}{4}},+\infty$
|
|
|
|
032118
|
|
$\dfrac{1}{3}a^2$
|
|
|
|
032119
|
|
C
|
|
|
|
032120
|
|
A
|
|
|
|
032121
|
|
B
|
|
|
|
032122
|
|
D
|
|
|
|
032123
|
|
(1)44.5;(2)$\dfrac{2}{5}$
|
|
|
|
032124
|
|
(1)证明略; (2)$\arctan\dfrac{2}{5}$
|
|
|
|
032125
|
|
(1)证明略; (2)$(-\infty,\dfrac{1}{3}]\cup[5,+\infty)$
|
|
|
|
032126
|
|
(1)$2\sqrt{10}$;(2)$x^2-y^2=1$; (3)$(0,\dfrac{\sqrt{2}}{2})\cup(\dfrac{\sqrt{5}}{2},+\infty)$
|
|
|
|
032127
|
|
(1)不是; (2)$t=-1,b_n=2^{n+1}$;(3)$\ln a_n<a_n-1$
|
|
|
|
032150
|
|
$-3$
|
|
|
|
032151
|
|
$\dfrac{8\pi}{3}+4\sqrt{3}$
|
|
|
|
032152
|
|
A
|
|
|
|
032153
|
|
B
|
|
|
|
032154
|
|
D
|
|
|
|
031046
|
|
(1)$2$;(2)$\arccos\dfrac{\sqrt{2}}{4}$
|
|
|
|
032155
|
|
(1)$\dfrac{3\pi}{4}$;(2)$\sqrt{2\sqrt{3}+2}$
|
|
|
|
032156
|
|
(1)$\dfrac{2}{7}$;(2)$X=0,1,2;P(X=0)=\dfrac{2}{7};P(X=1)\dfrac{4}{7};P(X=2)=\dfrac{1}{7}$
|
|
|
|
032157
|
|
(1)$(1,2)$;(2)$\dfrac{12\sqrt{5}}{5}$;(3)$\dfrac{10}{7}$
|
|
|
|
032158
|
|
(1)$g(x)=\dfrac{\ln x}{x}$;$f(x)$在$(-\infty,1]$严格增, 在$[1,+\infty)$严格减, 极大值为$\dfrac{1}{e}$;$g(x)$在$(0,e]$严格增, 在$[e,+\infty)$严格减, 极大值为$\dfrac{1}{e}$;(2)证明略; (3)证明略
|
|
|
|
030615
|
|
$\{0,1,2\}$
|
|
|
|
030966
|
|
$\sqrt{5}$
|
|
|
|
030760
|
|
$\dfrac{1}{2}$
|
|
|
|
024333
|
|
$5$
|
|
|
|
032180
|
|
$\begin{cases}
|
|
2,n=1\\
|
|
2\cdot 3^{n-1},n\geq 2
|
|
\end{cases}$
|
|
|
|
024334
|
|
$\dfrac{2}{5}$
|
|
|
|
031000
|
|
$\arccos\dfrac{\sqrt{10}}{10}$
|
|
|
|
032181
|
|
$(-\infty,1]$
|
|
|
|
030674
|
|
B
|
|
|
|
032182
|
|
D
|
|
|
|
030785
|
|
B
|
|
|
|
031048
|
|
(1)$\dfrac{3+\sqrt{6}+3\sqrt{3}}{2}$;(2)略
|
|
|
|
019475
|
|
(1)$a_n=2n+2$;(2)$S_n=\dfrac{3^n}{2}-n^2-3n-\dfrac{1}{2}$
|
|
|
|
032183
|
|
(1)$\dfrac{17}{21}$;(2)$(m,n)=(6,12),(7,14),(8,16)$(三者均可)
|
|
|
|
031087
|
|
(1)$\dfrac{x^2}{4}+\dfrac{y^2}{3}=1$;(2)$y=x-2$或$y=x-\dfrac{2}{7}$;(3)$3$
|
|
|
|
030597
|
|
$0$
|
|
|
|
030970
|
|
$1+i$
|
|
|
|
030850
|
|
$3$
|
|
|
|
032195
|
|
$24$
|
|
|
|
030999
|
|
$\sqrt{2}$
|
|
|
|
032196
|
|
$[-\dfrac{\pi}{3},\dfrac{\pi}{6}]$
|
|
|
|
024355
|
|
$\dfrac{1}{9}$
|
|
|
|
031125
|
|
$2$
|
|
|
|
030952
|
|
$\dfrac{1}{8}$
|
|
|
|
031106
|
|
C
|
|
|
|
030991
|
|
B
|
|
|
|
032197
|
|
D
|
|
|
|
032198
|
|
C
|
|
|
|
031047
|
|
(1)$\dfrac{\sqrt{3}}{2}$;(2)$arcsin\dfrac{\sqrt{3}}{8}$
|
|
|
|
030806
|
|
(1)$\dfrac{\pi}{3}$;(2) 略
|
|
|
|
032199
|
|
(1)$\dfrac{8}{15}$; (2)$\begin{pmatrix}
|
|
0&1&2&3\\
|
|
\dfrac{2}{25}&\dfrac{28}{75}&\dfrac{31}{75}&\dfrac{2}{15}
|
|
\end{pmatrix}$;$E[X]=\dfrac{8}{5}$
|
|
|
|
031092
|
|
(1)$8$; (2)$3x+10y+12=0$;(3)$\dfrac{4\sqrt{3}}{5}$
|
|
|
|
030736
|
|
(1)$4$; (2)略; (3)略 |