25届一些答案

This commit is contained in:
wangweiye7840 2024-06-04 11:39:14 +08:00
parent 4123cc4528
commit 93a6c1fc97
1 changed files with 495 additions and 79 deletions

View File

@ -1,122 +1,538 @@
ans ans
023644 021268
证明略 \begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 标准方程 & 图形 & 顶点 & 对称轴 & 焦点 & 准线 \\
\hline $y^2=2 p x$($p>0$) & \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-0.5,-2) -- (-0.5,2);
\draw [domain = -2:2] plot ({\x*\x/2},\x);
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(\frac{p}{2},0)$ & $x=-\frac{p}{2}$ \\
\hline $y^2=-2 p x$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (0.5,-2) -- (0.5,2);
\draw [domain = -2:2] plot ({-\x*\x/2},\x);
\end{tikzpicture} & $(0,0)$ & $x$轴 & $(-\frac{p}{2},0)$ & $x=\frac{p}{2}$ \\
\hline $x^2=2 p y$($p>0$)& \begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-2,-0.5) -- (2,-0.5);
\draw [domain = -2:2] plot (\x,{\x*\x/2});
\end{tikzpicture}& $(0,0)$ & $y$轴 & $(0,\frac{p}{2})$ & $y=-\frac{p}{2}$ \\
\hline $x^2=-2 p y$($p>0$)&\begin{tikzpicture}[>=latex,scale = 0.5]
\draw [->] (-2,0) -- (2,0) node [below] {$x$};
\draw [->] (0,-2) -- (0,2) node [right] {$y$};
\draw (0,0) node [below right] {$O$};
\draw (-2,0.5) -- (2,0.5);
\draw [domain = -2:2] plot (\x,-{\x*\x/2});
\end{tikzpicture} & $(0,0)$ & $y$轴 & $(0,-\frac{p}{2})$ & $y=\frac{p}{2}$ \\
\hline
\end{tabular}
\end{center}
019070 021270
(1) $f'(x)=2x\sin x+x^2 \cos x$; (2) $f'(x)=\dfrac{x^2+4x}{(x+2)^2}$; (3) $f'(x)=2x-4$ $(0,-8)$; $y=8$
019071 021271
证明略 $(0,\frac{1}{16})$; $y=-\frac{1}{16}$
019073 021272
$-4$或$\dfrac{1}{4}$ $(0,-\frac{1}{6})$; $y=\frac{1}{6}$
019074 041007
$-1$ (1) $y^2=-x$; (2) $y^2=4x$或$y^2=-4x$或$x^2=-4y$或$x^2=4y$; (3) $y^2=-\frac{16}{3}x$或 $x^2=\frac{9}{4}y$;
(4) $y^2=16x$或$y^2=-16x$;
(5) $y^2=16x$或$x^2=-12y$.
009913 021276
(1) $3\mathrm{e}^x-\mathrm{e}x^{\mathrm{e}-1}$; (2) $-\sin x+\dfrac{2}{x^2}$; (3) $24x^2+24x+6$; (4) $\dfrac{1}{2}x^{-\frac{1}{2}}\sin x+\sqrt{x} \cos x$; (5) $\ln x+1+2x^{-3}$; (6) $1+\dfrac{1}{x^2}$; (7) $\dfrac{4x}{(x^2+1)^2}$; (8) $\dfrac{1}{\cos^2 x}$ $\frac{5}{2}$
019076 021279
证明略 $(3,\pm 2\sqrt{3})$
000143 021284
(1) $\sqrt{58}$; (2) $k=-\dfrac{1}{3}$, 反向 $(3,\pm 2\sqrt{6})$
000144 021269
(1) $\overrightarrow{AB}=(-9,15)$, $|\overrightarrow{AB}|=3\sqrt{34}$; (2) $\overrightarrow{OC}=(3,6)$, $\overrightarrow{OD}=(19,-39)$; (3) $-56$ A
000146 021275
$\lambda=1$, $\mu=-2$ $(\frac{m}{4},0)$;$x=-\frac{m}{4}$
000148 041008
$(\dfrac{1}{3},-\dfrac{5}{3})$ $(0,\frac{1}{4a})$;$y=-\frac{1}{4a}$
000149 041009
证明略 $y^2=12x$
000152 041010
(1) 证明略; (2) $\dfrac{\pi}{6}$或$\dfrac{7\pi}{6}$ 2
000155 041011
$k=-\dfrac{2}{3}$ $y^2=-8x$;$m=\pm 2\sqrt{6}$
000157 008929
证明略 $x^2=-y,x\in [-1,1]$
000160 041012
不存在 (1) $(-1,0)$;$x=1$; (2) $\frac{x^2}{2}+y^2$=1; (3) $(4-3\sqrt{2},\pm \sqrt{12\sqrt{2}-16})$
024842 021278
$1$ $(1,\pm 2)$
014777 041013
$\mathrm{e}$ 最小值为$4$, $M(\frac{1}{4},1)$
024843 041014
$2x\cos x-x^2 \sin x$ $x^2=-12y$
024844 021280
$(1,-8)$或$(-1,-12)$ $y^2=x$
024845 041015
$y=2\sqrt{2}x-1$或$y=-2\sqrt{2} x-1$ $y^2=8x$
024846 021304
$1+\sqrt{2}$ $\frac{\pi}{2}$
024847 021308
$3$或$-1$ $\frac{11}{2}$
024849 021287
$-\dfrac{8}{15}{}^\circ/\mathrm{min}$ $\frac{45}{8}$
041168 009840
$-6-3\Delta t$ $(\frac{1}{4},0)$;$x=-\frac{1}{4}$
041170 021309
\textcircled{3} 2
041171 021290
等于 $(\frac{1}{2},1)$
041173 021291
$2$ $y^2=2x$或$y^2=6x$
041174 041016
$-\dfrac{1}{2}$ 相切
041175 021339
$\dfrac{1}{3}\text{m/s}$ $x^2-x+y^2=0(x\neq 0)$
041176 021289
$-2$ $4\sqrt{3}$
023654 021293
$\dfrac{10}{3}$ 3
041191 021294
$3$ $(4,2)$
041192 021295
$-4$ $-4$
041193 021305
$y=x+1$与$y=-3x-3$ $y^2=\pm 4x$
041194 013106
$\dfrac{3}{4}$ $[-1,1]$
041177 021292
$\sqrt{2}$ B
041178 008930
(1) $y=-2x+1$; (2) $y=x-\dfrac{1}{4}$ $0$或$-\frac{1}{2}$
024850 008934
(1) $f'(x)=\mathrm{e}^x-\cos x$; (2) $f'(x)=-\dfrac{1}{x\ln 3}$; (3) $f'(x)=2\sin x\cos x$; (4) $f'(x)=\dfrac{1}{\cos^2 x}$; (5) $f'(x)=-\dfrac{\cos x}{\sin^2 x}$; (6) $f'(x)=\dfrac{1}{2}x^{-\frac{1}{2}}-x^{-2}$; (7) $f'(x)=3x^2+6x+3$; (8) $f'(x)=\dfrac{1}{x}$ $4x-y-15=0$
041197 008922
(1) $y'=\dfrac{\sin x-\cos x-1}{(1+\cos x)^2}$; (2) $y'=3x^2-\dfrac{3}{x}x^{-\frac{5}{2}}+\dfrac{\cos x}{x^2}-\dfrac{2\in x}{x^3}$; (3) $y'=\dfrac{4}{(1-x)^2}$; (4) $y'=\tan x+\dfrac{x}{\cos^2 x}$ $y=\frac{1}{4},x>\frac{1}{16}$
021299
2
021300
$2\sqrt{15}$
021321
(1) 定点$(2,0)$;(2) 4
041017
(1) 6; (2) $\frac{1}{32}$
041018
8
021316
$\frac{11}{4}$
021326
8
021319
$y=\pm \frac{\sqrt{3}}{3}x+1$
041019
$\frac{2}{p}$
041020
D
041021
(1) $\frac{5p}{8}$; (2) $-2$;$-\frac{p}{y_0}$
021331
D
041022
C
041023
必要不充分
021334
$y=2x-3,x \leq 2$; $y=2x-3,x \in [1,2]$
021335
$y=-2x^2+8x-4$
021336
$y^2=8x-16$
021337
$x^2+y^2=1$
021338
$3x+y-4=0(x \neq 1)$
021340
$(x-1)^2+(y-2)^2=\frac{1}{9}$
021341
$x+2y-5=0$
021342
$x^2+y^2=4(x>0,y>0)$
021343
$(x-3)^2=10y-15$
041024
C
008846
0或$-\frac{1}{2}$
008847
$\frac{3}{2}$
008852
0或$\frac{1}{4}$或$-\frac{1}{2}$
008853
$[-4,4]]$
041025
(2) $13x-2y=0$
041026
$(-3,5),(1,1)$
041027
$k<-2$或$k>2$或$k=\pm \sqrt{3}$
010704
$(-\frac{2\sqrt{13}}{13},\frac{2\sqrt{13}}{13})$
010703
当$0<k<1$时,轨迹为椭圆;当$k>1$时,轨迹为双曲线;当$k=1$时,轨迹为抛物线
021348
$x^2+4(y-1)^2=4(0 \leq x \leq 2, 1 \leq y \leq 2)$
021349
0
021351
$\frac{\pi}{3}$或$\frac{2\pi}{3}$
041028
$(\frac{3\sqrt{3}}{2},1)$; $\arctan \frac{2\sqrt{3}}{9}$
021352
4
021353
D
041029
$x=a+r\cos \alpha, y=b+r \sin \alpha$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
021354
(1) $M_1$在曲线$C$上, $M_2$不在曲线$C$上; (2) $a=9$
021355
$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$双曲线
009845
$x=\frac{2+\cos \alpha}{2}, y=\frac{\sin \alpha}{2}$ ($\alpha$为参数, $\alpha \in \mathbf{R}$)
009846
$x=1+9t,y=1+12t$,其中 $t$ 为参数,$t\geq 0$
021358
6
021359
$\sqrt{17}$
021362
$(3\sqrt{2},\sqrt{2})$
021363
最大值7; 最小值$\frac{3\sqrt{15}-4}{4}$
021364
$\sqrt{33}+2\sqrt{6}$
012470
B
041030
B
041031
A
041032
$(-3,-\frac{3\sqrt{5}}{5}) \cup (\frac{3\sqrt{5}}{5},3)$
041033
13
041034
$\frac{1+2\sqrt{21}}{3}$
041035
$y=\pm 1$
041036
$y^2=2x-2$
041037
$7\sqrt{3}$
041038
(1) $C_1$是以$(-4,3)$为圆心,半径为1的圆; $C_2$是椭圆
$\frac{x^2}{64}+\frac{y^2}{9}=1$; (2) $\frac{8\sqrt{5}}{5}$
041039
(1) $x=1$,$5x-2y-3=0$,$2x-y-1=0$,$2x+y-3=0$;
(2) 点 $T$ 不在曲线 $\Gamma$ 上
ans
041073
(-2,$\dfrac{1}{2}$)
041074
$x-8y=0(x<-\dfrac{8}{15}\sqrt{15}$或$x>\dfrac{8}{15}\sqrt{15}$)
041075
$(-\infty,-1)\cup(1,+\infty)$
041076
$[3+2\sqrt{3},+\infty)$
041077
$2\sqrt{10}$
041078
44
002112
$y^2=4x$
002409
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
041079
$\pm 2\sqrt{6}$
041080
(5,0)
041081
$\dfrac{23}{24}$
041082
176.0
041083
$|PA|_{\min}=\begin{cases}
a,0<a\leq1\\
\sqrt{2a-1},a>1
\end{cases}$
041084
不存在
041085
(1)$m_A=91.5,m_B=90\\(2)S^2_A<S^2_B,A$稳定\\(3)$\dfrac{4}{5}$
041086
(1)$1<a<\sqrt{10}\\(2)l:x=3$或$x=\pm \dfrac{5}{7}\sqrt{7}+3$
041087
(1)$d=2$\\(2)$P$不存在\\(3)$l:x=\pm \sqrt{2}y+2$
002112
$y^2=4x$
002409
$y^2=-\dfrac{9}{2}x$或$x^2=\dfrac{4}{3}y$
041079
$\pm 2\sqrt{6}$
041080
$(5,0)$
041088
$2x\pm \sqrt{3}y-2=0$
003441
$\dfrac{11}{4}$
041089
$2x+y-2=0$
041090
$(2,2)$
041091
1$\quad(\dfrac{1}{9},\dfrac{2}{3})$
041092
$48$
041093
C
041094
$S_{max}=30$此时$P(8,4)$
041095
(1)$x_B+x_C=11\\y_B+y_C=-4$\\(2)$BC:y=-4x+20$\\(3)$B(\dfrac{11-\sqrt{21}}{2},-2+2\sqrt{21})$\\C($\dfrac{11+\sqrt{21}}{2},-2-2\sqrt{21})$
041096
$(1)C_2:\dfrac{y^2}{4}-\dfrac{x^2}{3}=1\\(2)p>\dfrac{4}{3}\sqrt{3},\quad \overrightarrow{FA}\cdot \overrightarrow{FB}_{max}=9,\quad$此时$p=2\sqrt{3}$\\(3)$p=2\sqrt{3}$
041097
$(-\infty,-2)$
041098
$\dfrac{1}{2}$
041099
(2)(3)(4)
018928
7
041100
AD,CD
041101
(3)(4)
041102
$\pm 2$
041103
$y^2-\dfrac{x^2}{48}=1\quad(y<0)$
041104
4或2或$\dfrac{3}{2}$
041105
(2)
023553
(1)$\dfrac{17}{45}$\\(2)一级6箱二级2箱\\(3)预估287.69克
041106
$[\dfrac{1}{3},1)\cup(1,3]$
018949
没有被抓的风险
041107
(1)$\dfrac{x^2}{24}+\dfrac{y^2}{20}=1\\S_{max}=\dfrac{5\sqrt{30}}{4}$
041108
D
041109
C
041110
A
041111
B
041112
$\dfrac{2}{5}\sqrt{10}$
041113
A
030201
B
041114
A
041115
$(\sqrt{3},2)$
041116
$\dfrac{\sqrt{2}}{2}$
041117
(1)$arccos\dfrac{2}{5}\\$(2)正弦值为$\dfrac{\sqrt{15}}{5}\\(3)\dfrac{\pi}{6}$
041118
$l:y-2=\dfrac{118}{143}(x-3)$
041119
$x^2+y^2+x-6y+3=0$
041120
曲线方程为$y^2=48-12x\quad(x\geq3)$及$y^2=4x\quad(x<3)$
041121
$x^2+y^2=7$
ans
012345
D
023233
$a_{n}=\begin{cases}2-a,n=1 \\2^{n-1},n\geq2
\end{cases}$.
023255
(1)略;(2)$a_n=\begin{cases}
\frac{1}{2},n=1\\-\frac{1}{2n(n-1)},n\geq2
\end{cases}$